基于改進(jìn)遺傳算法的支持向量機(jī)特征選擇
式中dis指新生種群的最優(yōu)適應(yīng)度相對(duì)于原種群的最優(yōu)適應(yīng)度的增幅比,j與k均是區(qū)間(0,1)上的調(diào)節(jié)系數(shù)。文中的j與k分別取0.65和0.055。
獨(dú)立敏感度信息量在一定程度上體現(xiàn)了單個(gè)特征所含有的分類信息量,如果獨(dú)立敏感度信息量小,則說明該特征所含信息大部分對(duì)分類沒有幫助,即該基因位發(fā)生突變后對(duì)整個(gè)染色體的優(yōu)異性影響不大,突變的概率也就相應(yīng)減小。因此將獨(dú)立敏感度信息量歸一化后所得到的q(i)作為特征i被選為變異點(diǎn)的概率。變異點(diǎn)的具體選擇方法為:針對(duì)一個(gè)染色體按照染色體的位數(shù)進(jìn)行循環(huán)遍歷,在該循環(huán)中由變異率Pm判定是否產(chǎn)生變異位。若需要產(chǎn)生變異位,則依據(jù)q(i)按照輪盤算法進(jìn)行選擇。
模擬退火選群
在每一輪進(jìn)化完成后都需要決定進(jìn)入下一輪進(jìn)化的種群。如果過多地將較優(yōu)種群作為父代,就會(huì)使算法過早收斂或搜索緩慢。文獻(xiàn)[7]中指出模擬退火算法能夠以一定的概率接受劣解從而跳出局部極值區(qū)域并最終趨于全局最優(yōu)解,因此可以將上文提到的最優(yōu)適應(yīng)度增幅比作為能量函數(shù),運(yùn)用模擬退火的Meteopolis準(zhǔn)則來選擇待進(jìn)化的種群。為了使每個(gè)種群得到充分地進(jìn)化,預(yù)防最優(yōu)解的丟失,這里采用設(shè)置退火步長(zhǎng)的策略來實(shí)現(xiàn)模擬退火選群。該策略具體為:使退火步長(zhǎng)對(duì)同一種群作為父代的次數(shù)進(jìn)行計(jì)數(shù),一旦產(chǎn)生更優(yōu)種群則退火步長(zhǎng)就置零并重新計(jì)數(shù)。若退火步長(zhǎng)累計(jì)超過一定的閾值時(shí),就進(jìn)入模擬退火選群階段。退火步長(zhǎng)累計(jì)到一定數(shù)量意味著原有種群的進(jìn)化已經(jīng)停滯,需要用模擬退火算法擺脫這種停滯狀態(tài)。如果增幅比大于零,則說明新生種群優(yōu)于原有種群,這時(shí)完全接受新種群進(jìn)入下一輪進(jìn)化;否則新生種群劣于原有種群,并以一定的概率p接受較劣的新生種群[8]進(jìn)入下一輪進(jìn)化。接受概率p由式(6)和式(7)共同決定,其中dis為增幅比,T(s)指溫度參數(shù),T0和s分別是初始溫度和迭代次數(shù)。
以上兩式的參數(shù)要滿足進(jìn)化對(duì)接受概率的要求。即增幅比負(fù)增長(zhǎng)越大,接受概率降低越迅速,但接受概率隨迭代次數(shù)的增加應(yīng)緩慢下降。這樣做能夠保證在有限的迭代次數(shù)內(nèi)有一個(gè)適應(yīng)度較優(yōu)的新生種群進(jìn)入下一輪進(jìn)化,以達(dá)到減少計(jì)算量和優(yōu)選待進(jìn)化種群的目的。在本文中T0=0.2,A=0.9,m=0.5。
實(shí)例的驗(yàn)證與分析
UCI數(shù)據(jù)庫(kù)常用來比較各種方法的分類效果,因此可以用其驗(yàn)證本算法對(duì)支持向量機(jī)作用后的分類效果[9][10]。文獻(xiàn)[11]采用了UCI數(shù)據(jù)庫(kù)中的German、Ionosphere和Sonar三種數(shù)據(jù)作為實(shí)驗(yàn)對(duì)象,為了便于與文獻(xiàn)[11]中所用的幾種方法進(jìn)行對(duì)比,本文也采用這三種數(shù)據(jù)進(jìn)行實(shí)驗(yàn),并按照文獻(xiàn)中所述的比例將各類數(shù)據(jù)分成相應(yīng)的訓(xùn)練樣本和測(cè)試樣本。
評(píng)論