嵌入式Linux內(nèi)核移植相關(guān)代碼分析
C、B:這兩位決定了該section的cache&write buffer屬性,這與該段的用途(RO or RW)有密切關(guān)系。不同的用途要做不同的設(shè)置。
C B 具體含義
0 0 無cache,無寫緩沖,任何對memory的讀寫都反映到總線上。對 memory 的操作過程中CPU需要等待。
0 1 無cache,有寫緩沖,讀操作直接反映到總線上。寫操作CPU將數(shù)據(jù)寫入到寫緩沖后繼續(xù)運行,由寫緩沖進行寫回操作。
1 0 有cache,寫通模式,讀操作首先考慮cache hit;寫操作時直接將數(shù)據(jù)寫入寫緩沖,如果同時出現(xiàn)cache hit,那么也更新cache。
1 1 有cache,寫回模式,讀操作首先考慮cache hit;寫操作也首先考慮cache hit。
由于ARM中section表項的權(quán)限位和page表項的位置不同, 以下代碼根據(jù)struct map_desc 中的保護標(biāo)志,分別計算頁表項中的AP, Domain和CB標(biāo)志位。
/*******************************************************************************/
prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
(md->prot_read ? L_PTE_USER : 0) |
(md->prot_write ? L_PTE_WRITE : 0) |
(md->cacheable ? L_PTE_CACHEABLE : 0) |
(md->bufferable ? L_PTE_BUFFERABLE : 0);
prot_sect = PMD_TYPE_SECT | PMD_DOMAIN(md->domain) |
(md->prot_read ? PMD_SECT_AP_READ : 0) |
(md->prot_write ? PMD_SECT_AP_WRITE : 0) |
(md->cacheable ? PMD_SECT_CACHEABLE : 0) |
(md->bufferable ? PMD_SECT_BUFFERABLE : 0);
/********************************************************************/
設(shè)置虛擬地址,偏移地址和內(nèi)存length
/********************************************************************/
virt = md->virtual;
off = md->physical - virt;
length = md->length;
--------------------------------------------------------------------------------
Send_linux 回復(fù)于:2007-03-06 15:45:16
/********************************************************************/
建立虛擬地址到物理地址的映射
/********************************************************************/
while ((virt 0xfffff || (virt + off) 0xfffff) length >= PAGE_SIZE) {
alloc_init_page(virt, virt + off, md->domain, prot_pte);
virt += PAGE_SIZE;
length -= PAGE_SIZE;
}
while (length >= PGDIR_SIZE) {
alloc_init_section(virt, virt + off, prot_sect);
virt += PGDIR_SIZE;
length -= PGDIR_SIZE;
}
while (length >= PAGE_SIZE) {
alloc_init_page(virt, virt + off, md->domain, prot_pte);
virt += PAGE_SIZE;
length -= PAGE_SIZE;
}
/*************************************************************************/
create_mapping的作用是設(shè)置虛地址virt 到物理地址virt + off_set的映射頁目錄和頁表。
/*************************************************************************/
/* 映射中斷向量表區(qū)域 */
init_maps->physical = virt_to_phys(init_maps);
init_maps->virtual = vectors_base();
init_maps->length = PAGE_SIZE;
init_maps->domain = DOMAIN_USER;
init_maps->prot_read = 0;
init_maps->prot_write = 0;
init_maps->cacheable = 1;
init_maps->bufferable = 0;
create_mapping(init_maps);
中斷向量表的虛地址init_maps,是用alloc_bootmem_low_pages分配的,通常是在PAGE_OFF+0x8000前面的某一頁,vectors_base()是個宏,ARM規(guī)定中斷向量表的地址只能是0或0xFFFF0000,所以上述代碼映射一頁到0或0xFFFF0000,中斷處理程序中的部分代碼也被拷貝到這一頁中。
5.3 parse_options()
分析由內(nèi)核引導(dǎo)程序發(fā)送給內(nèi)核的啟動選項,在初始化過程中按照某些選項運行,并將剩余部分傳送給init進程。這些選項可能已經(jīng)存儲在配置文件中,也可能是由用戶在系統(tǒng)啟動時敲入的。但內(nèi)核并不關(guān)心這些,這些細(xì)節(jié)都是內(nèi)核引導(dǎo)程序關(guān)注的內(nèi)容,嵌入式系統(tǒng)更是如此。
5.4 trap_init()
這個函數(shù)用來做體系相關(guān)的中斷處理的初始化,在該函數(shù)中調(diào)用__trap_init((void*)vectors_base())函數(shù)將exceptionvector設(shè)置到vectors_base開始的地址上。__trap_init函數(shù)位于entry-armv.S文件中,對于ARM處理器,共有復(fù)位、未定義指令、SWI、預(yù)取終止、數(shù)據(jù)終止、IRQ和FIQ幾種方式。SWI主要用來實現(xiàn)系統(tǒng)調(diào)用,而產(chǎn)生了IRQ之后,通過exceptionvector進入中斷處理過程,執(zhí)行do_IRQ函數(shù)。
armnommu的trap_init()函數(shù)在arch/armnommu/kernel/traps.c文件中。vectors_base是寫中斷向量的開始地址,在include/asm-armnommu/proc-armv/system.h文件中設(shè)置,地址為0或0XFFFF0000。
ENTRY(__trap_init)
stmfd sp!, {r4 - r6, lr}
mrs r1, cpsr @ code from 2.0.38
bic r1, r1, #MODE_MASK @ clear mode bits /* 設(shè)置svc模式,disable IRQ,FIQ */
orr r1, r1, #I_BIT|F_BIT|MODE_SVC @ set SVC mode, disable IRQ,FIQ
msr cpsr, r1
adr r1, .LCvectors @ set up the vectors
ldmia r1, {r1, r2, r3, r4, r5, r6, ip, lr}
stmia r0, {r1, r2, r3, r4, r5, r6, ip, lr} /* 拷貝異常向量 */
add r2, r0, #0x200
adr r0, __stubs_start @ copy stubs to 0x200
adr r1, __stubs_end
1: ldr r3, [r0], #4
str r3, [r2], #4
cmp r0, r1
blt 1b
LOADREGS(fd, sp!, {r4 - r6, pc})
__stubs_start到__stubs_end的地址中包含了異常處理的代碼,因此拷貝到vectors_base+0x200的位置上。
5.5 init_IRQ()
void __init init_IRQ(void)
{
extern void init_dma(void);
int irq;
for (irq = 0; irq NR_IRQS; irq++) {
irq_desc[irq].probe_ok = 0;
irq_desc[irq].valid = 0;
irq_desc[irq].noautoenable = 0;
irq_desc[irq].mask_ack = dummy_mask_unmask_irq;
irq_desc[irq].mask = dummy_mask_unmask_irq;
irq_desc[irq].unmask = dummy_mask_unmask_irq;
}
CSR_WRITE(AIC_MDCR, 0x7FFFE); /* disable all interrupts */
CSR_WRITE(CAHCNF,0x0);/*Close Cache*/
CSR_WRITE(CAHCON,0x87);/*Flush Cache*/
while(CSR_READ(CAHCON)!=0);
CSR_WRITE(CAHCNF,0x7);/*Open Cache*/
init_arch_irq();
init_dma();
}
這個函數(shù)用來做體系相關(guān)的irq處理的初始化,irq_desc數(shù)組是用來描述IRQ的請求隊列,每一個中斷號分配一個irq_desc結(jié)構(gòu),組成了一個數(shù)組。NR_IRQS代表中斷數(shù)目,這里只是對中斷結(jié)構(gòu)irq_desc進行了初始化。在默認(rèn)的初始化完成后調(diào)用初始化函數(shù)init_arch_irq,先執(zhí)行arch/armnommu/kernel/irq-arch.c文件中的函數(shù)genarch_init_irq(),然后就執(zhí)行include/asm-armnommu/arch-xxxx/irq.h中的inline函數(shù)irq_init_irq,在這里對irq_desc進行了實質(zhì)的初始化。其中mask用阻塞中斷;unmask用來取消阻塞;mask_ack的作用是阻塞中斷,同時還回應(yīng)ack給硬件表示這個中斷已經(jīng)被處理了,否則硬件將再次發(fā)生同一個中斷。這里,不是所有硬件需要這個ack回應(yīng),所以很多時候mask_ack與mask用的是同一個函數(shù)。
接下來執(zhí)行init_dma()函數(shù),如果不支持DMA,可以設(shè)置include/asm-armnommu/arch-xxxx/dma.h中的MAX_DMA_CHANNELS為0,這樣在arch/armnommu/kernel/dma.c文件中會根據(jù)這個定義使用不同的函數(shù)。
5.6 sched_init()
初始化系統(tǒng)調(diào)度進程,主要對定時器機制和時鐘中斷的BottomHalf的初始化函數(shù)進行設(shè)置。與時間相關(guān)的初始化過程主要有兩步:(1)調(diào)用init_timervecs()函數(shù)初始化內(nèi)核定時器機制;(2)調(diào)用init_bh()函數(shù)將BH向量TIMER_BH、TQUEUE_BH和IMMEDIATE_BH所對應(yīng)的BH函數(shù)分別設(shè)置成timer_bh()、tqueue_bh()和immediate_bh()函數(shù)
5.7 softirq_init()
內(nèi)核的軟中斷機制初始化函數(shù)。調(diào)用tasklet_init初始化tasklet_struct結(jié)構(gòu),軟中斷的個數(shù)為32個。用于bh的tasklet_struct結(jié)構(gòu)調(diào)用tasklet_init()以后,它們的函數(shù)指針func全都指向bh_action()。bh_action就是tasklet實現(xiàn)bh機制的代碼,但此時具體的bh函數(shù)還沒有指定。
HI_SOFTIRQ用于實現(xiàn)bottom half,TASKLET_SOFTIRQ用于公共的tasklet。
open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL); /* 初始化公共的tasklet_struct要用到的軟中斷 */
open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL); /* 初始化tasklet_struct實現(xiàn)的bottom half調(diào)用 */
這里順便講一下軟中斷的執(zhí)行函數(shù)do_softirq()。
軟中斷服務(wù)不允許在一個硬中斷服務(wù)程序內(nèi)部執(zhí)行,也不允許在一個軟中斷服務(wù)程序內(nèi)部執(zhí)行,所以通過in_interrupt()加以檢查。h->action 就是串行化執(zhí)行軟中斷,當(dāng)bh 的tasklet_struct鏈入的時候,就能在這里執(zhí)行,在bh里重新鎖定了所有CPU,導(dǎo)致一個時間只有一個CPU可以執(zhí)行bh函數(shù),但是do_softirq()是可以在多CPU上同時執(zhí)行的。而每個tasklet_struct在一個時間上是不會出現(xiàn)在兩個CPU上的。另外,只有當(dāng)Linux初始化完成開啟中斷后,中斷系統(tǒng)才可以開始工作。
5.8 time_init()
這個函數(shù)用來做體系相關(guān)的timer的初始化,armnommu的在arch/armnommu/kernel/time.c。這里調(diào)用了在include/asm-armnommu/arch-xxxx/time.h中的inline函數(shù)setup_timer,setup_timer()函數(shù)的設(shè)計與硬件設(shè)計緊密相關(guān),主要是根據(jù)硬件設(shè)計情況設(shè)置時鐘中斷號和時鐘頻率等。
void __inline__ setup_timer (void)
{
/*----- disable timer -----*/
CSR_WRITE(TCR0, xxx);
CSR_WRITE (AIC_SCR7, xxx); /* setting priority level to high */
/* timer 0: 100 ticks/sec */
CSR_WRITE(TICR0, xxx);
timer_irq.handler = xxxxxx_timer_interrupt;
setup_arm_irq(IRQ_TIMER, timer_irq); /* IRQ_TIMER is the interrupt number */
INT_ENABLE(IRQ_TIMER);
/* Clear interrupt flag */
CSR_WRITE(TISR, xxx);
/* enable timer */
CSR_WRITE(TCR0, xxx);
}
5.9 console_init()
控制臺初始化。控制臺也是一種驅(qū)動程序,由于其特殊性,提前到該處完成初始化,主要是為了提前看到輸出信息,據(jù)此判斷內(nèi)核運行情況。很多嵌入式Linux操作系統(tǒng)由于沒有在/dev目錄下正確配置console設(shè)備,造成啟動時發(fā)生諸如unable to open an initialconsole的錯誤。
/*******************************************************************************/
init_modules()函數(shù)到smp_init()函數(shù)之間的代碼一般不需要作修改,
如果平臺具有特殊性,也只需對相關(guān)函數(shù)進行必要修改。
這里簡單注明了一下各個函數(shù)的功能,以便了解。
/*******************************************************************************/
5.10 init_modules()
模塊初始化。如果編譯內(nèi)核時使能該選項,則內(nèi)核支持模塊化加載/卸載功能
5.11 kmem_cache_init()
內(nèi)核Cache初始化。
5.12 sti()
使能中斷,這里開始,中斷系統(tǒng)開始正常工作。
--------------------------------------------------------------------------------
Send_linux 回復(fù)于:2007-03-06 15:46:04
5.13 calibrate_delay()
近似計算BogoMIPS數(shù)字的內(nèi)核函數(shù)。作為第一次估算,calibrate_delay計算出在每一秒內(nèi)執(zhí)行多少次__delay循環(huán),也就是每個定時器滴答(timer tick)D百分之一秒內(nèi)延時循環(huán)可以執(zhí)行多少次。這種計算只是一種估算,結(jié)果并不能精確到納秒,但這個數(shù)字供內(nèi)核使用已經(jīng)足夠精確了。
BogoMIPS的數(shù)字由內(nèi)核計算并在系統(tǒng)初始化的時候打印。它近似的給出了每秒鐘CPU可以執(zhí)行一個短延遲循環(huán)的次數(shù)。在內(nèi)核中,這個結(jié)果主要用于需要等待非常短周期的設(shè)備驅(qū)動程序DD例如,等待幾微秒并查看設(shè)備的某些信息是否已經(jīng)可用。
計算一個定時器滴答內(nèi)可以執(zhí)行多少次循環(huán)需要在滴答開始時就開始計數(shù),或者應(yīng)該盡可能與它接近。全局變量jiffies中存儲了從內(nèi)核開始保持跟蹤時間開始到現(xiàn)在已經(jīng)經(jīng)過的定時器滴答數(shù), jiffies保持異步更新,在一個中斷內(nèi)——每秒一百次,內(nèi)核暫時掛起正在處理的內(nèi)容,更新變量,然后繼續(xù)剛才的工作。
5.14 mem_init()
內(nèi)存初始化。本函數(shù)通過內(nèi)存碎片的重組等方法標(biāo)記當(dāng)前剩余內(nèi)存, 設(shè)置內(nèi)存上下界和頁表項初始值。
5.15 kmem_cache_sizes_init()
內(nèi)核內(nèi)存管理器的初始化,也就是初始化cache和SLAB分配機制。
5.16 pgtable_cache_init()
頁表cache初始化。
5.17 fork_init()
這里根據(jù)硬件的內(nèi)存情況,如果計算出的max_threads數(shù)量太大,可以自行定義。
5.18 proc_caches_init();
為proc文件系統(tǒng)創(chuàng)建高速緩沖
5.19 vfs_caches_init(num_physpages);
為VFS創(chuàng)建SLAB高速緩沖
5.20 buffer_init(num_physpages);
初始化buffer
5.21 page_cache_init(num_physpages);
頁緩沖初始化
5.22 signals_init();
創(chuàng)建信號隊列高速緩沖
5.23 proc_root_init();
在內(nèi)存中創(chuàng)建包括根結(jié)點在內(nèi)的所有節(jié)點
5.24 check_bugs();
檢查與處理器相關(guān)的bug
5.25 smp_init();
5.26 rest_init(); 此函數(shù)調(diào)用kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL)函數(shù)。
5.26.1 kernel_thread()函數(shù)分析
這里調(diào)用了arch/armnommu/kernel/process.c中的函數(shù)kernel_thread,kernel_thread函數(shù)中通過 __syscall(clone) 創(chuàng)建新線程。__syscall(clone)函數(shù)參見armnommu/kernel目錄下的entry-common.S文件。
5.26.2 init()完成下列功能:
Init()函數(shù)通過kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL)的回調(diào)函數(shù)執(zhí)行,完成下列功能。
do_basic_setup()
在該函數(shù)里,sock_init()函數(shù)進行網(wǎng)絡(luò)相關(guān)的初始化,占用相當(dāng)多的內(nèi)存,如果所開發(fā)系統(tǒng)不支持網(wǎng)絡(luò)功能,可以把該函數(shù)的執(zhí)行注釋掉。
do_initcalls()實現(xiàn)驅(qū)動的初始化, 這里需要與vmlinux.lds聯(lián)系起來看才能明白其中奧妙。
static void __init do_initcalls(void)
{
initcall_t *call;
call = __initcall_start;
do {
(*call)();
call++;
} while (call __initcall_end);
/* Make sure there is no pending stuff from the initcall sequence */
flush_scheduled_tasks();
}
查看 /arch/i386/vmlinux.lds,其中有一段代碼
__initcall_start = .;
.initcall.init : { *(.initcall.init) }
__initcall_end = .;
其含義是__initcall_start指向代碼節(jié).initcall.init的節(jié)首,而__initcall_end指向.initcall.init的節(jié)尾。
do_initcalls所作的是系統(tǒng)中有關(guān)驅(qū)動部分的初始化工作,那么這些函數(shù)指針數(shù)據(jù)是怎樣放到了.initcall.init節(jié)呢?在include/linux/init.h文件中有如下3個定義:
1. #define __init_call __attribute__ ((unused,__section__ (.initcall.init)))
__attribute__的含義就是構(gòu)建一個在.initcall.init節(jié)的指向初始函數(shù)的指針。
2. #define __initcall(fn) static initcall_t __initcall_##fn __init_call = fn
##意思就是在可變參數(shù)使用宏定義的時候構(gòu)建一個變量名稱為所指向的函數(shù)的名稱,并且在前面加上__initcall_
3. #define module_init(x) __initcall(x);
很多驅(qū)動中都有類似module_init(usb_init)的代碼,通過該宏定義逐層解釋存放到.initcall.int節(jié)中。
blkmem相關(guān)的修改(do_initcalls()初始化驅(qū)動時執(zhí)行此代碼)
在blkmem_init()函數(shù)中,調(diào)用了blk_init_queue()函數(shù),blk_init_queue()函數(shù)調(diào)用了 blk_init_free_list()函數(shù),blk_init_free_list()函數(shù)又調(diào)用了blk_grow_request_list() 函數(shù),在這個函數(shù)中會kmem_cache_alloc出nr_requests個request結(jié)構(gòu)體。
這里如果nr_requests的值太大,則將占用過多的內(nèi)存,將造成硬件內(nèi)存不夠,因此可以根據(jù)實際情況將其替換成了較小的值,比如32、16等。
free_initmem
這個函數(shù)在arch/armnommu/mm/init.c文件中,其作用就是對init節(jié)的釋放,也可以通過修改代碼指定為不釋放。
5.26.3 init執(zhí)行過程
在內(nèi)核引導(dǎo)結(jié)束并啟動init之后,系統(tǒng)就轉(zhuǎn)入用戶態(tài)的運行,在這之后創(chuàng)建的一切進程,都是在用戶態(tài)進行。這里先要清楚一個概念:就是init進程雖然是從內(nèi)核開始的,即在前面所講的init/main.c中的init()函數(shù)在啟動后就已經(jīng)是一個核心線程,但在轉(zhuǎn)到執(zhí)行init程序(如 /sbin/init)之后,內(nèi)核中的init()就變成了/sbin/init程序,狀態(tài)也轉(zhuǎn)變成了用戶態(tài),也就是說核心線程變成了一個普通的進程。這樣一來,內(nèi)核中的init函數(shù)實際上只是用戶態(tài)init進程的入口,它在執(zhí)行execve(/sbin/init,argv_init, envp_init)時改變成為一個普通的用戶進程。這也就是exec函數(shù)的乾坤大挪移法,在exec函數(shù)調(diào)用其他程序時,當(dāng)前進程被其他進程“靈魂附體”。
除此之外,它們的代碼來源也有差別,內(nèi)核中的init()函數(shù)的源代碼在/init/main.c中,是內(nèi)核的一部分。而/sbin/init程序的源代碼是應(yīng)用程序。
init程序啟動之后,要完成以下任務(wù):檢查文件系統(tǒng),啟動各種后臺服務(wù)進程,最后為每個終端和虛擬控制臺啟動一個getty進程供用戶登錄。由于所有其它用戶進程都是由init派生的,因此它又是其它一切用戶進程的父進程。
init進程啟動后,按照/etc/inittab的內(nèi)容進程系統(tǒng)設(shè)置。很多嵌入式系統(tǒng)用的是BusyBox的init,它與一般所使用的init不一樣,會先執(zhí)行/etc/init.d/rcS而非/etc/rc.d/rc.sysinit。
小結(jié):
本想多整理一些相關(guān)資料,無奈又要開始新項目的奔波,start_kernel()函數(shù)也剛好差不多講完了,分析的不是很深入,希望對嵌入式Linux移植的網(wǎng)友們有一些幫助。最后列舉下面幾處未整理的知識點,有興趣的網(wǎng)友可作進一步探討。
text.init和data.init說明
__init標(biāo)示符在gcc編譯器中指定將該函數(shù)置于內(nèi)核的特定區(qū)域。在內(nèi)核完成自身初始化之后,就試圖釋放這個特定區(qū)域。實際上,內(nèi)核中存在兩個這樣的區(qū)域,.text.init和.data.initDD第一個是代碼初始化使用的,另外一個是數(shù)據(jù)初始化使用的。另外也可以看到 __initfunc和__initdata標(biāo)志,前者和__init類似,標(biāo)志初始化專用代碼,后者則標(biāo)志初始化專用數(shù)據(jù)。
System.map內(nèi)核符號表
irq的處理過程
Linux內(nèi)核調(diào)度過程本文引用地址:http://cafeforensic.com/article/149812.htm linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)
評論