基于ARM Linux的Gameboy模擬器移植和優(yōu)化研究
中斷問題
Gnuboy需要依賴宿主操作系統(tǒng)(這里是L inux)來提供輸入/輸出等基本服務,讓宿主操作系統(tǒng)作為它與硬件設備的中間人,這種游離于硬件通信細節(jié)之外的方法具有良好的可移植性,本文要解決的主要是提供對鍵盤輸入和游戲控制終端的中斷響應和處理。
在本文構建的平臺下,需要編寫相應的鍵盤和游戲控制終端的Linux驅動程序,以模塊方式加載后,在Gnuboy中打開該設備。對應鍵盤處理,在Gnuboy中需要調整相應的鍵盤設置代碼使之與系統(tǒng)一致。
提供Framebuffer支持
Framebuffer技術提供了一個訪問物理圖形設備的定義良好的接口,本文構建的平臺下采用的是Qt系統(tǒng)的嵌入式版本,它是基于Framebuffer的, Gnuboy要在該平臺下運行,必須提供對Framebuffer的支持。通過訪問/dev/ fb0來取得系統(tǒng)framebuffer中用于顯示圖像的數(shù)據(jù)和進行處理。在Gnuboy中調用游戲畫面的Framebuffer地址和掃描方法也需要作響應的修改。
修改Framebuffer地址,也就是獲得游戲畫面的開始地址在內存中的位置。針對采用的LCD 的分辨率, 需要在Gnuboy中計算Framebuffer地址處做出相應修改。對于本平臺中采用的LCD, Gnuboy刷新處理方法是從第一行開始,逐行刷新,同時由于一個像素采用兩個字節(jié),因此在逐行刷新時,每次寫兩個字節(jié)。
數(shù)據(jù)存儲格式和字符串到64位整數(shù)轉換
在ARM Linux下可配置成大數(shù)端或者小數(shù)端格式來保存和處理整數(shù)數(shù)值,在Gnuboy中與數(shù)值存儲字節(jié)順序有關的代碼需要與之對應。
Linux明顯缺乏用來把整數(shù)字符串轉換為64位整數(shù)的函數(shù),如果字符串參數(shù)突破32位的極限,就有可能出問題,因此在Gnuboy需要提供字符串到64位整數(shù)的的轉換函數(shù)。
設置啟動模擬器路徑和編譯
在用戶已經選擇好游戲Rom,點擊launch simulator按鈕觸發(fā)啟動模擬器,進入游戲功能,因此在Gnuboy代碼中需要獲得rom的絕對路徑,由于QT操作系統(tǒng)無法在代碼中直接運行qtop iagnuboy命令,因此需要給出該可執(zhí)行文件的絕對路徑。
源代碼修改好以后,在Makefile中設定交叉編譯器: CC= arm - linux - gcc, CXX = arm - linux - g + +。編譯時要用到針對ARM的函數(shù)庫可以把函數(shù)庫放在一個自己建的一個目錄,為了讓gcc 在搜索函數(shù)庫時到指定的目錄中尋找,可在Makefile的通過- L參數(shù)添加存放針對ARM函數(shù)庫的目錄。例如QTOP IA L IBS = - L $(QPED IR) / lib。
經過交叉編譯后把得到的可執(zhí)行文件qtop iagnuboy和qtop iagnuboyl燒到嵌入式系統(tǒng)中可以運行,然后不足之處是畫面速度有些慢,這正是下面優(yōu)化要研究的問題。
如果說CISC的指導思想之一是為了減輕編譯的負擔,R ISC則向編譯提出了更高的要求,ARM作為一種R ISC體系結構,優(yōu)化問題顯得非常重要。從圖4 的抽象層次可以知道,對Gnuboy的優(yōu)化問題,概括來說是對它一些抽象代碼進行硬件相關代碼替代的過程,并且越是底層的代碼,速度越快,這里直接用ARM匯編語言來改寫一些原來的C函數(shù)。前面的移植運行結果已經顯示, Gnuboy的圖像顯示較慢。它的函數(shù)void lcd refreshline ( )的主要功能是使用已經解碼好的圖像數(shù)據(jù)來完成游戲畫面的顯示。對它的優(yōu)化主要是對它里面調用的兩個用C語言所寫函數(shù)updatepatp ix ( )和bg scan color ( )函數(shù)的優(yōu)化。
本文采用了與機器相關優(yōu)化的優(yōu)化技術,與機器相關的優(yōu)化這里主要是寄存器分配問題,一般寄存器分配算法是基于一種稱為圖著色技術的。給定一個無向圖G= (V , E ) ,V 是有限節(jié)點的集合,V = { v 1, v 2, ., v n} , E是邊的集合, E = { ( i, j ) | v i∈V , v j∈V , v i和v j相連} , 圖著色問題要求找到一個k盡量小的所有節(jié)點的賦值(也稱“完全賦值”) C: V ― > {1.k } , 要求在該完全賦值中, 若( i,j ) ∈E , 則C ( v i) ≠C ( vj) 。
簡化的圖著色技術應用
針對本文的優(yōu)化,第一階段是把C函數(shù)用偽ARM匯編指令(即用符號寄存器Ui替代真正ARM寄存器的ARM指令)改寫。
第二階段對符號寄存器U1~Un ( n > 15)畫出相干圖并進行著色,所謂對圖進行著色是指給圖中的每個結點賦予一種顏色,而且所有相鄰的兩個結點都具有不同的顏色。這樣,每種顏色就對應于處理器中的一個實際的物理寄存器,如此著色保證了所有可能發(fā)生沖突的符號寄存器都被賦予不同的物理寄存器。
假設n + 1個符號寄存器的相干圖如圖5 ( a)所示,其中結點是符號寄存器,而結點之間的弧線表示變量的生命周期有重疊,最少需要16種顏色才能避免相連結點顏色有重疊。由于ARM920T只有r0~r14等15個寄存器可用于存儲程序變量,小于16,也就是存在寄存器沖突問題,這個時候就可以通過選擇刪除一個結點(如圖中Un + 1) ,也就是把U6對應的數(shù)據(jù)存儲到存儲器中,以后再重裝入寄存器來達到對各寄存器進行釋放的目的,見圖5 ( b)所示,虛線圓圈表示符號寄存器U16對應的數(shù)據(jù)轉存到存儲器中。
用上面介紹的方法對updatepatp ix和bg scan color函數(shù)進行處理,得到的ARM匯編函數(shù),用它們替換掉gnuboy源代碼中原先的C函數(shù)并進行編譯生成可執(zhí)行文件,可執(zhí)行文件在構建的測試板上運行良好。下面對上面提到的優(yōu)化來進行一些測試。
測試評估
用CodeWarrior forARM Developer Suite和AXD Debugger軟件測試優(yōu)化前后函數(shù)的運行時間,結果如表1所示。圖著色技術強調實現(xiàn)活躍變量的100%分配,并且代碼需要寄存器數(shù)量越多,優(yōu)化效果越明顯,這從updatapatp ix和bg scan color函數(shù)的優(yōu)化中可以看出(前者代碼較后者復雜,需要存放的臨時變量也多) 。進一步優(yōu)化gnuboy,可用類似的方法替換源代碼的另外一些影響速度較大的函數(shù)。
總結
本文構建了一個基于ARM920T嵌入式Linux的實驗平臺環(huán)境, gnuboy作為一種虛擬機,應用到這樣的嵌入式環(huán)境中遇到的問題具有一定的代表性,最需要解決的問題是速度問題,針對于此,本文實現(xiàn)了它在所構建的平臺上的移植和一些優(yōu)化研究。
評論