時鐘同步技術現(xiàn)狀及發(fā)展
(3) 1PPS(1 Pulse per Second)及串行口ASCII字符串
秒脈沖信號,不包含時刻信息,但其上升沿標記了準確的每秒的開始,通常用于本地測試,也可用于局內時間分配。通過RS232/RS422串行通訊口,將時間信息以ASCII碼字符串方式進行編碼,波特率一般為9600bit/s,精度不高,通常還需同時利用1PPS信號。由于串行口ASCII字符串目前沒有統(tǒng)一的標準,不同廠家設備間無法實現(xiàn)互通,故該方法應用范圍較小。到2008年,中國移動規(guī)定了1PPS+ToD接口的規(guī)范,ToD信息采用二進制協(xié)議。1PPS+ToD技術可用于局內時間傳送,需要人工補償傳輸時延,其精度通常只能達到100ns量級,但不能實現(xiàn)遠距離的局間傳送。
(4) PTP(Precision Time Protocal)
PTP與NTP的實現(xiàn)原理均是基于雙向對等的傳輸時延,最大的不同是時間標簽的產生和處理環(huán)節(jié)。PTP通過物理層的時戳標記來獲得遠高于NTP的時間精度?;贗EEE-1588的PTP技術原先用于需要嚴格時序配合的工業(yè)控制,為了順應通信網(wǎng)中對高精度時間同步需求的快速增長,IEEE-1588 從原先的版本1發(fā)展到版本2,并且已在同步設備上、光傳輸設備上、3G基站設備上得到應用。
在我國,PTP技術主要是基于光傳輸系統(tǒng)實現(xiàn)高精度時間傳送的,國內運營商在最近幾年中開展了通過地面?zhèn)鬏斚到y(tǒng)傳送高精度時間的研究,在實驗室及現(xiàn)網(wǎng)上進行了大量的試驗,并取得了一定的成果,已超過了國外相關方面的研究水平。目前國內已在一定規(guī)模的網(wǎng)絡環(huán)境下實現(xiàn)了PTP局間時間傳送,精度能達到微秒級。
4 同步新技術展望
相對于成熟的頻率同步技術,以PTP技術為引領的時間同步技術嶄露頭角。新興的時間同步與現(xiàn)有的頻率同步彼此相對獨立,但從長遠來看,頻率同步與時間同步的統(tǒng)一是發(fā)展的必然趨勢,為此,本文在這里推出了通用定時接口技術和光纖時間同步網(wǎng)這一概念,作為拋磚引玉供讀者探討。
在ITU-T J.211標準中規(guī)定了一種新型的定時接口,即DTI(DOCSIS Timing InteRFace)。DTI應用于有線電纜網(wǎng)絡,通過協(xié)議交互方式,在一根電纜線上同時實現(xiàn)頻率和時間同步。DTI基本工作原理是:服務器與客戶端之間采用一根DTI電纜進行連接,服務器在獲取精確時間戳和基準頻率信號后,校正本地時鐘并向下游DTI客戶端輸出DTI信號,在一根DTI電纜的服務器和客戶端兩側,通過乒乓(ping-pong)機制無間斷地發(fā)送和接受DTI報文,從而實現(xiàn)DTI客戶端與服務器之間的同步。DTI利用RJ45接口的1、2管腳進行收發(fā)協(xié)議的乒乓傳輸,以最大限度地減少兩個方向傳輸?shù)臅r延不對稱性引入的時間誤差,并最大限度地減少串擾。隨著技術的不斷發(fā)展,DTI技術將逐漸應用于通信領域,即通用定時接口技術。
通用定時接口技術可直接應用于一根光纖(而不是光傳輸系統(tǒng))上,實現(xiàn)數(shù)十公里的無中繼傳送。隨著技術的不斷發(fā)展,采用級聯(lián)方式可以實現(xiàn)數(shù)百公里甚至上千公里的傳送,而且還可以真正地實現(xiàn)百納秒甚至更高量級時間精度的傳送。相關實驗表明,在80km的光纖上已經可以實現(xiàn)10ns以內的時間傳送。對于直接基于光纖傳送的通用定時接口技術,可以避免傳統(tǒng)的基于光傳輸系統(tǒng)的時間傳送技術帶來的不對等性影響。而且,在采用單纖雙向傳輸技術后,通用定時接口技術可以自動監(jiān)測并計算出單向傳播時延,實現(xiàn)時延的自動補償,從而解決了傳統(tǒng)的基于光傳輸系統(tǒng)的時間傳送技術難以實現(xiàn)的時延自動補償問題。
通用定時接口技術另外一個優(yōu)勢就是能同時提供統(tǒng)一的時間和頻率同步,可以很好地兼容現(xiàn)有的頻率同步網(wǎng)和時間同步網(wǎng),以及兼容現(xiàn)有通信網(wǎng)中所有需同步的系統(tǒng)與設備。我國傳統(tǒng)的頻率同步網(wǎng)只能溯源到各運營商獨立運行的銫原子鐘,未來幾年內的時間同步網(wǎng)只能通過衛(wèi)星授時接收機溯源到UTC。如果采用通用定時接口技術,即便是在時間信號溯源到衛(wèi)星授時系統(tǒng)時,在衛(wèi)星接收機天饋線時延補償應用方面,也可以實現(xiàn)自動時延補償。具體而言,時間源頭設備的衛(wèi)星接收機天饋線部分會引入固定時延;對于不同型號不同長度的天饋線,其時延無法按照統(tǒng)一的經驗值(例如4~5ns/米)進行補償,尤其在串接了避雷器、放大器、分配器、連接器后,時延誤差更加難以控制。如果在蘑菇頭和衛(wèi)星接收機之間采用具有自動時延補償?shù)耐ㄓ枚〞r接口技術,則可以有效保證時間源頭設備的同步精度。然而,基于光纖并采用通用定時接口技術,還可以將現(xiàn)有的頻率基準和時間基準溯源到地面的國家級時頻基準上,以至于根本上擺脫對衛(wèi)星授時系統(tǒng)的依賴。從而實現(xiàn)可同時提供高可靠、高質量時間和頻率服務的光纖時間同步網(wǎng)。
有關通用定時接口技術和光纖時間同步網(wǎng)技術的標準化和具體實現(xiàn)還有待進一步研究。
5 結束語
綜上所述,微型化、低功率芯片級原子鐘的出現(xiàn),無疑是時鐘技術領域的一次劃時代而具有沖擊力的大革命;而通用定時接口技術、光纖時間同步網(wǎng)技術的推出,也為同步網(wǎng)技術的發(fā)展注入了新的生命力。鑒于我國在高精度時間同步方面的研究已走在國際前列,后續(xù)應在同步新技術方面積極開展研究。
電子血壓計相關文章:電子血壓計原理
評論