GMR生物傳感器的原理及研究
美國海軍實驗室于1998年率先提出利用GMR效應和免疫磁標記實現GMR牛物傳感器的設想他們通過測量DNA、抗原-抗體、施體和受體等的實驗,證明了其原理的可行性,從而進一步提出了磁標記陣列計數器(BARC),并研制出DNA陣列芯片圖2是美圍海軍實驗室和NVE公司聯合設計的第三代BARC陣列芯片,其平面布局如圖2(a)所示,圖2(b)是圖2(a)的局部放大,它采用半導體工藝在硅基片上集成了64路GMR傳感器,每一路傳感器都是由總長為8 mm、寬為1.6μm磁阻條來回曲折地分布在直徑為200μm的圓形區(qū)域內(圖2(c)),其磁電阻值為42 kΩ,飽和磁化強度和GMR效應(△R/R)分別為30 mT和15%,每一個傳感器可以單獨完成一種檢測傳感器采用磁性層/非磁性層/磁性層的多層膜結構,被非磁性層隔開的兩個磁性層之間反平行耦合。
除了美國海軍實驗室和NVE公司以外,美國斯坦福大學、德國比勒非爾德大學、葡萄牙里斯本大學等也對GMR生物傳感器展開研究在國內,對GMR生物傳感器展開研究的有中國科學院電工研究所、清華大學、電子科技大學等,雖然取得了一定的進展,但是缺乏和生物技術的有機結合,發(fā)展比較落后。
GMR傳感器檢測過程如圖3所示首先,在傳感器表面生成用于特定檢測的生物探針(圖3(a)),再使檢測試液流過傳感器表面,試液中特定的目標分子將被探針捕獲(圖3(b)),然后加入免疫磁性微球,免疫磁性微球與目標分子發(fā)生作用完成標記(圖3(c))此時,需要采用垂直于傳感器表面的外加梯度磁場將未參與標記的多余免疫磁性微球分離,這樣可以減小檢測時的背景噪聲,從而提高檢測的精確度然后,再用外加的交變磁場將磁標記磁化,磁化的磁標記產生的附加交變磁場引起傳感器磁電阻的變化,通過讀取磁電阻的變化可以判定待檢試液中是否有目標分子,并根據磁電阻變化的幅度可以判斷待檢試液中目標分子的濃度等情況。
4 信號檢測電路
磁電阻的變化需要轉化成電信號,有兩種實現方式,一是惠斯登橋路結構,如圖4(a)所示,另一種是采用I-V轉換法,如圖4(b)所示。
評論