色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          關 閉

          新聞中心

          EEPW首頁 > 工控自動化 > 設計應用 > 變頻器的控制方式及應用選型

          變頻器的控制方式及應用選型

          作者: 時間:2011-03-16 來源:網(wǎng)絡 收藏

          表1各種的比較U/f=C電壓空間矢量控制矢量控制直接轉(zhuǎn)矩控制*
          反饋裝置不帶PG帶PG或PID調(diào)節(jié)器不要不帶PG帶PG或編碼器
          速比I1:401:601:1001:1001:10001:100
          起動轉(zhuǎn)矩(在3Hz)150%150%150%150%零轉(zhuǎn)速時為150%零轉(zhuǎn)速時為>150%~200%
          靜態(tài)速度精度±(0.2~0.3)%±(0.2~0.3)%±0.2%±0.2%±0.2%±0.2%
          適用場合一般風機、泵類等較高精度調(diào)速,控制一般工業(yè)上的調(diào)速或控制所有調(diào)速或控制伺服拖動、高精傳動、轉(zhuǎn)矩控制負荷起動、起重負載轉(zhuǎn)矩控制系統(tǒng),恒轉(zhuǎn)矩波動大負載
          *注:直接轉(zhuǎn)矩控制,在帶PG或編碼器后,I可拓展至1:1000,靜態(tài)速度精度可達+0.01%。

          本文引用地址:http://cafeforensic.com/article/162308.htm


          4.1原則

          首先要根據(jù)機械對轉(zhuǎn)速(最高、最低)和轉(zhuǎn)矩(起動、連續(xù)及過載)的要求,確定機械要求的最大輸入功率(即電機的額定功率最小值)。有經(jīng)驗公式

          P=nT/9950(kW)

          式中:P——機械要求的輸入功率(kW);

          n——機械轉(zhuǎn)速(r/min);

          T——機械的最大轉(zhuǎn)矩(N·m)。

          然后,選擇電機的極數(shù)和額定功率。電機的極數(shù)決定了同步轉(zhuǎn)速,要求電機的同步轉(zhuǎn)速盡可能地覆蓋整個調(diào)速范圍,使連續(xù)負載容量高一些。為了充分利用設備潛能,避免浪費,可允許電機短時超出同步轉(zhuǎn)速,但必須小于電機允許的最大轉(zhuǎn)速。轉(zhuǎn)矩取設備在起動、連續(xù)運行、過載或最高轉(zhuǎn)速等狀態(tài)下的最大轉(zhuǎn)矩。最后,根據(jù)輸出功率和額定電流稍大于電機的功率和額定電流的原則來確定的參數(shù)與型號。

          需要注意的是,的額定容量及參數(shù)是針對一定的海拔高度和環(huán)境溫度而標出的,一般指海拔1000m以下,溫度在40℃或25℃以下。若使用環(huán)境超出該規(guī)定,則在確定變頻器參數(shù)、型號時要考慮到環(huán)境造成的降容因素。

          4.2變頻器的外部配置及應注意的問題

          1)選擇合適的外部熔斷器,以避免因內(nèi)部短路對整流器件的損壞變頻器的型號確定后,若變頻器內(nèi)部整流電路前沒有保護硅器件的快速熔斷器,變頻器與電源之間應配置符合要求的熔斷器和隔離開關,不能用空氣斷路器代替熔斷器和隔離開關。

          2)選擇變頻器的引入和引出電纜根據(jù)變頻器的功率選擇導線截面合適的三芯或四芯屏蔽動力電纜。尤其是從變頻器到電機之間的動力電纜一定要選用屏蔽結(jié)構(gòu)的電纜,且要盡可能短,這樣可降低電磁輻射和容性漏電流。當電纜長度超過變頻器所允許的輸出電纜長度時,電纜的雜散電容將影響變頻器的正常工作,為此要配置輸出電抗器。對于控制電纜,尤其是I/0信號電纜也要用屏蔽結(jié)構(gòu)的。對于變頻器的外圍元件與變頻器之間的連接電纜其長度不得超過10m。

          3)在輸入側(cè)裝交流電抗器或EMC濾波器根據(jù)變頻器安裝場所的其它設備對電網(wǎng)品質(zhì)的要求,若變頻器工作時已影響到這些設備的正常運行,可在變頻器輸入側(cè)裝交流電抗器或EMC濾波器,抑制由功率器件通斷引起的電磁干擾。若與變頻器連接的電網(wǎng)的變壓器中性點不接地,則不能選用EMC濾波器。當變頻器用500V以上電壓驅(qū)動電機時,需在輸出側(cè)配置du/dt濾波器,以抑制逆變輸出電壓尖峰和電壓的變化,有利于保護電機,同時也降低了容性漏電流和電機電纜的高頻輻射,以及電機的高頻損耗和軸承電流。使用du/dt濾波器時要注意濾波器上的電壓降將引起電機轉(zhuǎn)矩的稍微降低;變頻器與濾波器之間電纜長度不得超過3m。

          5結(jié)語

          變頻器的是一項需要認真對待的工作,目前市場上低壓通用變頻器的品種及規(guī)格很多,選擇時應按實際的負載特性,以滿足使用要求為準,以便做到量才使用,經(jīng)濟實惠。

          作者簡介

          周志敏,男,1985年畢業(yè)于哈爾濱建筑大學(現(xiàn)為哈爾濱工業(yè)大學)自動化專業(yè),就職于山東萊蕪鋼鐵集團,主要從事電氣技術管理和技術改造及技術開發(fā)工作。
          變頻器的控制

          周志敏

          (山東萊蕪鋼鐵集團公司動力部,山東萊蕪271104)

          摘要:結(jié)合國內(nèi)變頻技術的推廣,闡述了通用變頻器的幾種控制方式的技術特性,針對變頻器控制方式的合理選用,重點論述了轉(zhuǎn)距控制型變頻器的選型和中的相關問題。

          關鍵詞:控制方式;應用選型;注意事項

          1引言

          變頻技術是應交流電機無級調(diào)速的需要而誕生的。20世紀60年代以后,電力電子器件經(jīng)歷了SCR(晶閘管)、GTO(門極可關斷晶閘管)、BJT(雙極型功率晶體管)、MOSFET(金屬氧化物場效應管)、SIT(靜電感應晶體管)、SITH(靜電感應晶閘管)、MGT(MOS控制晶體管)、MCT(MOS控制晶閘管)、IGBT(絕緣柵雙極型晶體管)、HVIGBT(耐高壓絕緣柵雙極型晶閘管)的發(fā)展過程,器件的更新促進了電力電子變換技術的不斷發(fā)展。20世紀70年代開始,脈寬調(diào)制變壓變頻(PWM-VVVF)調(diào)速研究引起了人們的高度重視。20世紀80年代,作為變頻技術核心的PWM模式優(yōu)化問題吸引著人們的濃厚興趣,并得出諸多優(yōu)化模式,其中以鞍形波PWM模式效果最佳。20世紀80年代后半期開始,美、日、德、英等發(fā)達國家的VVVF變頻器已投入市場并獲得了廣泛應用。

          2變頻器控制方式

          低壓通用變頻輸出電壓為380~650V,輸出功率為0.75~400kW,工作頻率為0~400Hz,它的主電路都采用交倉豹步壞緶貳F淇刂品絞驕歷了以下四代。

          2.1U/f=C的正弦脈寬調(diào)制(SPWM)控制方式

          其特點是控制電路結(jié)構(gòu)簡單、成本較低,機械特性硬度也較好,能夠滿足一般傳動的平滑調(diào)速要求,已在產(chǎn)業(yè)的各個領域得到廣泛應用。但是,這種控制方式在低頻時,由于輸出電壓較低,轉(zhuǎn)矩受定子電阻壓降的影響比較顯著,使輸出最大轉(zhuǎn)矩減小。另外,其機械特性終究沒有直流電動機硬,動態(tài)轉(zhuǎn)矩能力和靜態(tài)調(diào)速性能都還不盡如人意,且系統(tǒng)性能不高、控制曲線會隨負載的變化而變化,轉(zhuǎn)矩響應慢、電機轉(zhuǎn)矩利用率不高,低速時因定子電阻和逆變器死區(qū)效應的存在而性能下降,穩(wěn)定性變差等。因此人們又研究出矢量控制變頻調(diào)速。 2.2電壓空間矢量(SVPWM)控制方式

          它是以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉(zhuǎn)磁場軌跡為目的,一次生成三相調(diào)制波形,以內(nèi)切多邊形逼近圓的方式進行控制的。經(jīng)實踐使用后又有所改進,即引入頻率補償,能消除速度控制的誤差;通過反饋估算磁鏈幅值,消除低速時定子電阻的影響;將輸出電壓、電流閉環(huán),以提高動態(tài)的精度和穩(wěn)定度。但控制電路環(huán)節(jié)較多,且沒有引入轉(zhuǎn)矩的調(diào)節(jié),所以系統(tǒng)性能沒有得到根本改善。

          2.3矢量控制(VC)方式

          矢量控制變頻調(diào)速的做法是將異步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換,等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉(zhuǎn)子磁場定向旋轉(zhuǎn)變換,等效成同步旋轉(zhuǎn)坐標系下的直流電流Im1、It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉(zhuǎn)矩成正比的電樞電流),然后模仿直流電動機的控制方法,求得直流電動機的控制量,經(jīng)過相應的坐標反變換,實現(xiàn)對異步電動機的控制。其實質(zhì)是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉(zhuǎn)子磁鏈,然后分解定子電流而獲得轉(zhuǎn)矩和磁場兩個分量,經(jīng)坐標變換,實現(xiàn)正交或解耦控制。矢量控制方法的提出具有劃時代的意義。然而在實際應用中,由于轉(zhuǎn)子磁鏈難以準確觀測,系統(tǒng)特性受電動機參數(shù)的影響較大,且在等效直流電動機控制過程中所用矢量旋轉(zhuǎn)變換較復雜,使得實際的控制效果難以達到理想分析的結(jié)果。

          2.4直接轉(zhuǎn)矩控制(DTC)方式

          1985年,德國魯爾大學的DePenbrock教授首次提出了直接轉(zhuǎn)矩控制變頻技術。該技術在很大程度上解決了上述矢量控制的不足,并以新穎的控制思想、簡潔明了的系統(tǒng)結(jié)構(gòu)、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。目前,該技術已成功地應用在電力機車牽引的大功率交流傳動上。

          直接轉(zhuǎn)矩控制直接在定子坐標系下分析交流電動機的數(shù)學模型,控制電動機的磁鏈和轉(zhuǎn)矩。它不需要將交流電動機等效為直流電動機,因而省去了矢量旋轉(zhuǎn)變換中的許多復雜計算;它不需要模仿直流電動機的控制,也不需要為解耦而簡化交流電動機的數(shù)學模型。

          2.5矩陣式交—交控制方式

          VVVF變頻、矢量控制變頻、直接轉(zhuǎn)矩控制變頻都是交-直-交變頻中的一種。其共同缺點是輸入功率因數(shù)低,諧波電流大,直流電路需要大的儲能電容,再生能量又不能反饋回電網(wǎng),即不能進行四象限運行。為此,矩陣式交-交變頻應運而生。由于矩陣式交-交變頻省去了中間直流環(huán)節(jié),從而省去了體積大、價格貴的電解電容。它能實現(xiàn)功率因數(shù)為l,輸入電流為正弦且能四象限運行,系統(tǒng)的功率密度大。該技術目前雖尚未成熟,但仍吸引著眾多的學者深入研究。其實質(zhì)不是間接的控制電流、磁鏈等量,而是把轉(zhuǎn)矩直接作為被控制量來實現(xiàn)的。具體方法是:

          ——控制定子磁鏈引入定子磁鏈觀測器,實現(xiàn)無速度傳感器方式;

          ——自動識別(ID)依靠精確的電機數(shù)學模型,對電機參數(shù)自動識別;

          ——算出實際值對應定子阻抗、互感、磁飽和因素、慣量等算出實際的轉(zhuǎn)矩、定子磁鏈、轉(zhuǎn)子速度進行實時控制;

          ——實現(xiàn)BandBand控制按磁鏈和轉(zhuǎn)矩的Band-Band控制產(chǎn)生PWM信號,對逆變器開關狀態(tài)進行控制。

          矩陣式交步槐淦稻哂鋅燜俚淖矩響應(2ms),很高的速度精度(±2%,無PG反饋),高轉(zhuǎn)矩精度(+3%);同時還具有較高的起動轉(zhuǎn)矩及高轉(zhuǎn)矩精度,尤其在低速時(包括0速度時),可輸出150%~200%轉(zhuǎn)矩。



          評論


          相關推薦

          技術專區(qū)

          關閉