LCD電視背光驅(qū)動電路設計方案
1.2 全橋架構(gòu)
全橋架構(gòu)最適合於直流電源電壓非常寬的應用(圖2),這就是幾乎所有筆記本PC都采用全橋方式的原因。在筆記本中,轉(zhuǎn)換器的直流電源直接來自系統(tǒng)的主直流電源,其變化范圍通常在7V(低電池電壓)至21V(交流配接器)。有些全橋方案要求采用p通道MOSFET,比n通道MOSFET更貴。另外,由於固有的高導通電阻,p通道MOSFET的效率更低。
1.3 半橋架構(gòu)
圖3:半橋驅(qū)動器比全橋驅(qū)動器少用兩個MOSFET
相較全橋,半橋架構(gòu)最大的好處是每個通道少用了兩只MOSFET(圖3)。但是,它需要更高匝比的變壓器,這會增加變壓器的成本。還有,如同全橋架構(gòu)一樣,半橋架構(gòu)也可能會用到p通道MOSFET。
1.4 推挽架構(gòu)
推挽驅(qū)動器有很多好處:這種架構(gòu)只用到n通道MOSFET(圖4),這有利於降低成本和增加轉(zhuǎn)換器效率;它很容易適應較高的轉(zhuǎn)換器直流電源電壓;采用更高的轉(zhuǎn)換器直流電源電壓時,只需選擇具有合適的漏-源擊穿電壓的MOSFET即可。不管轉(zhuǎn)換器的直流電源電壓如何,都可采用同樣的CCFL控制器。但采用n通道MOSFET的全橋和半橋架構(gòu)就無法做到這一點。
推挽架構(gòu)最大的缺點是要求轉(zhuǎn)換器直流電源電壓的范圍小於2:1。否則,當直流電源電壓處於高階時,由於交流波形的高振幅因子,系統(tǒng)的效率會降低。這使推挽架構(gòu)不適用於筆記型電腦,但對於LCD電視非常理想,因為轉(zhuǎn)換器直流電源電壓通常會穩(wěn)定在±20%以內(nèi)。
圖4:推挽驅(qū)動器非常簡單,還可精確控制
2 多燈驅(qū)動
CCFL已在筆記型電腦、數(shù)位相機、導航系統(tǒng)以及其他具有較小LCD螢幕的設備中使用多年。這些類型的設備通常只用一個CCFL,因此,傳統(tǒng)設計只用一個CCFL控制器。隨著大尺寸LCD面板的出現(xiàn),帶來對多CCFL的需求,有必要采用新的方式來應對這種新的需求。可能的方式之一是采用一個單通道CCFL控制器來驅(qū)動多個燈(圖5)。這種方式中,CCFL控制器只透過其中的一個燈來監(jiān)測燈電流,而以幾乎相同的交流波形同時驅(qū)動所有并聯(lián)的燈。然而,這種方式存在著幾個缺陷。
圖5:由於亮度不均勻以及其他的一些考慮,用一個單通道CCFL控制器控制多個燈不太理想
使顯示器不會出現(xiàn)明顯的亮區(qū)和暗區(qū)。用相同的波形驅(qū)動所有燈,由於燈阻抗的差異,會造成亮度不均勻。而且,CCFL的亮度隨溫度而變。由於熱氣上升,面板頂部的燈會比面板底部的燈熱,這也會造成亮度不均勻。
用一個單通道CCFL控制器驅(qū)動多個燈的第二個缺點是,單燈的失效(例如破損)會造成所有燈關閉。第三個缺點,由於是并聯(lián)驅(qū)動所有燈,同時打開和關閉這些燈,這就要求轉(zhuǎn)換器直流電源必須采用更大的電容器增強去耦效果,這會增加轉(zhuǎn)換器的成本和尺寸。
解決上述諸問題的一條途徑就是每個燈用一個單獨的CCFL控制器。然而,這種方式的主要缺點就是增加的CCFL控制器帶來了額外的成本。
評論