TDA8902J數(shù)字功放電路簡介及抗干擾設計
2.2地線設計
地線比電源線更重要。克服電磁干擾,最主要的手段是地線的設計。地線的布線特別講究,通常采用單點接地法。模擬地、數(shù)字地和大功率器件地分開, 最后都匯集到電源地。該功放地線結構有系統(tǒng)地、機殼地、數(shù)字地和模擬地等。地線的設計原則是:
(1)數(shù)字地與模擬地分開。該功放既有邏輯電路又有線性電路,應使它們盡量分開,分別與電源端地線相連,并盡可能加大線性電路的接地面積。模擬音頻的地應盡量采用單點并聯(lián)接地。
(2)接地線應盡量加粗。若接地線很細。接地電位則隨電流的變化而變化,致使功放電路信號電平不穩(wěn),抗噪聲性能變壞。通常使地線能通過三倍的電流。該功放接地線應在3 ~6mm 以上。
(3)正確選擇單點接地與多點接地。該功放的模擬部分, 工作頻率低,它的布線和器件間的電感影響較小,而接地電路形成的環(huán)流對干擾影響較大,因而應采用單點接地。而在數(shù)字部分工作頻率大于10MHz時,地線阻抗變得很大,此時應盡量降低地線阻抗, 就近多點接地。當工作頻率在1—10MHz時,如果采用單點接地,其地線長度不應超過波長的1/20,否則應采用多點接地法。該功放數(shù)字部分雖然開關頻率為125kHz,但由于諧波的影響,采用多點接地更好。
(4)將接地線構成閉環(huán)路。數(shù)字功放的PCB,將接地線設計成閉環(huán)路可以明顯地提高抗噪聲能力。其原因在于:電路中耗電元件多,因受接地線粗細的限制,會在地線上產生較大的電位差,引起抗噪聲能力下降,若將接地構成環(huán)路,則會縮小電位差值,提高功放電路的抗噪聲能力。
2.3 信號線的設計
與PCB以外的弱信號相連時,通常采用屏蔽電纜。對于高頻和數(shù)字信號,屏蔽電纜兩端都接地。該功放模擬音頻信號用的屏蔽電纜,采用一端接地為好。而PCB 中的信號走線應盡量短并避開干擾源。 本文引用地址:http://cafeforensic.com/article/167533.htm
3.電磁兼容性(EMC)設計
一個簡單的電磁干擾模型由三部分組成, 如圖3—1所示。該功放含有開關電源和大功率、大電流驅動電路以及含有微弱模擬信號電路與高精度A/D 變換電路的系統(tǒng),電磁干擾不可避免。EMC設計的目的是使功放既能抑制各種外來的干擾,同時又能減少本身對其它電子設備的電磁干擾。 3.1 PCB設計中的EMC措施 該功放注意了不同的布局區(qū)域,使專用零伏線、電源線的走線寬度≥ 1mm, 電源與地呈“井” 字形分布,分布線電流達到了均衡,并為模擬電路專門提供一根零伏線。為減少線間串擾,增加了印刷線條間距,并安插了幾根零伏線作為線間隔離。PCB的插頭也多安排二根零伏線作為線間隔離。特別注意了電流流通中的導線環(huán)路尺寸。 3.2配套于PCB的開關電源的EMC 電源在向功放供電的同時,也將噪聲加到了電路中。該功放電路的信號輸入、振蕩及控制部分最容易受外界噪聲的干擾。電網上的強干擾通過電源進入電路,電路中的模擬信號最容易受到來自電源的干擾。該電源對電網的傳導騷擾及輻射騷擾是非線性流和初級電路中功率晶體管外殼與散熱器之間的耦合在電源輸入端產生的共模噪聲。 該電源對開關電壓波形進行了修整,在晶體管與散熱器之間加裝了帶屏蔽層的絕緣墊片,在市電輸入端加接了互感濾波器,并減小了環(huán) 路面積,在次級整流回路中使用的軟恢復二極管上并聯(lián)了聚酯薄膜電容,因而使開關電壓波形得到了很大的改善。 3.3傳輸線的EMC 同軸電纜有較好的抗電磁干擾能力。該功放信號線所用同軸電纜為美國的AUDIOOUEST(線圣), 采用單端接地,為磁感應減小了環(huán)路 電流,使磁場屏蔽性能增強。--++ plugin_code qcomic begin--> |
基于TDA8902J的數(shù)字功放, 功率大、熱損耗小、音質好、體積小,通過對其PCB 進行電磁兼容設計后,音質更好、信噪比更高、抗干擾能力也明顯增強, 可應用于很多音頻設備中,如聲卡、有源音箱、汽車音響等,具有廣闊的前景。 4.結束語 |
DIY機械鍵盤相關社區(qū):機械鍵盤DIY
評論