基于Turbo 碼的MIMO-OFDM檢測系統(tǒng)的研究與設計
若交織器和基于外部信息比的反饋符號估計值已知,就可以計算出MMSE系數(shù)[8],則在MIMO系統(tǒng)中采用臨界結果,就可以找到一個很好的估計信道矩陣的方法。當存在信道估計出現(xiàn)偏差時,會產(chǎn)生地板效應,而該效應會嚴重影響軟干擾抵消的性能。所以,只能利用逐步信道估計方法去避免地板效應。就在迭代剛開始時,用一個短訓練值對信道矩陣進行預估計,然后利用每次迭代產(chǎn)生的反饋符號估計值不斷地對信道估計進行修正。檢測器再利用這個修正值得到空間匹配濾波器的權重和干擾估計。另外,如果給MMSE檢測器似然比輸出值設置一個門限,當超過這個門限時,系統(tǒng)就可以利用這些符號的硬判決去實現(xiàn)信道估計。
本文引用地址:http://cafeforensic.com/article/174602.htm檢測器輸出的信息經(jīng)過解交織以后送往譯碼器,Log-MAP算法能夠計算每一個信息比特的精確的后驗概率。
若對于檢測器迭代軟輸出為:
3 檢測系統(tǒng)的性能分析
通過仿真結果,來檢測基于Turbo碼的檢測系統(tǒng)與原分層空時碼檢測系統(tǒng)在無線通信傳輸過程中的性能。仿真過程中先不采用信道編碼技術,考慮不同的信道傳輸環(huán)境中,基于Turbo 碼的檢測系統(tǒng)與MIMO-OFM系統(tǒng)在不同的迭代次數(shù)和采用不同的天線系統(tǒng)下性能的差異。由于分層空時編碼多應用于準靜態(tài)傳輸,因此這里只對準靜態(tài)信道下的分層空時編碼進行仿真,仿真結果如圖3所示,橫坐標為發(fā)射天線和接收天線的數(shù)目,縱坐標為誤比特率。
從圖3中可以發(fā)現(xiàn),基于Turbo碼的檢測系統(tǒng)在二次迭代的情況下要優(yōu)于V-BLAST系統(tǒng)。并且隨著天線數(shù)目的增加,該系統(tǒng)性能也越來越好。而且隨著迭代數(shù)目的增加和天線系統(tǒng)的增加,在快衰落信道內傳輸?shù)幕赥urbo碼的檢測系統(tǒng)性能可以逐漸接近AWGN信道傳輸性能。
接下來再從不同天線數(shù)目情況下,比較兩個系統(tǒng)的性能??紤]不同的天線結構為MT = MR = 8 ,MT = 5而MR = 8 ,MT = 6 而MR = 8 ,MT = 8 而MR = 5 ,MT = 8 而MR = 6五種情況下,基于Turbo碼的檢測系統(tǒng)和BLAST系統(tǒng)誤碼率性能,仿真結果如圖4所示。
考慮的基于Turbo碼的檢測系統(tǒng)是在10 次迭代以內的最好性能。從圖4中可以看到隨著天線數(shù)目的增加基于Turbo 碼的檢測系統(tǒng)和BLAST 系統(tǒng)性能都有所改善,但是在任何天線系統(tǒng)下基于Turbo碼的檢測系統(tǒng)性能總是要優(yōu)于BLAST系統(tǒng)性能。而且根據(jù)BLAST性能,系統(tǒng)在誤碼率性能中的實際增益是在發(fā)射天線數(shù)目僅次于接收天線數(shù)目情況下體現(xiàn)的。因此基于Turbo碼的檢測系統(tǒng)性能也會因為天線數(shù)目的增加而性能受到抑制。比如當天線數(shù)目為MT = MR = 8 時,基于Turbo碼的檢測系統(tǒng)比BLAST 系統(tǒng)有2~3 dB 的增益,而在MT = 5而MR = 8 狀態(tài)時,卻只有0.5 dB的增益。
4 結語
本文在MIMO-OFDM系統(tǒng)中利用Turbo迭代譯碼思想,將接收機設計成為利用軟信息的檢測器與譯碼器,并且兩者之間通過交織器和解交織器相連接。充分利用了迭代檢測的解碼方法,即降低了發(fā)射端數(shù)據(jù)流的復雜度,又簡化了傳統(tǒng)分層空時解碼求偽逆的計算量。另外,在編碼系統(tǒng)中,所有的用戶信息都是同一時刻發(fā)送的,每個分量譯碼器的輸入相互獨立。即使在快衰落環(huán)境下,每條路徑上的相關性都很小,這使得該系統(tǒng)即獲得了大的分集增益,又提高了系統(tǒng)的譯碼性能。通過仿真結果證明,在不同的傳輸環(huán)境下,比原來的MIMO-OFDM系統(tǒng),在誤比特率上有了很大的改進。
評論