通信用高頻開關電源技術的發(fā)展
同步整流包括自驅動與外部驅動。自驅動同步整流方法簡單易行,但是次級電壓波形容易受到變壓器漏感等諸多因素的影響,造成批量生產時可靠性較低而較少應用于實際產品中。對于12V以上至20V左右輸出電壓的變換則多采用專門的外部驅動IC,這樣可以達到較好的電氣性能與更高的可靠性。
本文引用地址:http://cafeforensic.com/article/177973.htmTI公司提出了預測驅動策略的芯片UCC27221/2,動態(tài)調節(jié)死區(qū)時間以降低體二極管的導通損耗。ST公司也設計出類似的芯片STSR2/3,不僅用于反激也適用于正激,同時改進了連續(xù)與斷續(xù)導通模式的性能。美國電力電子系統中心(CPES)研究了各種諧振驅動拓撲以降低驅動損耗,并于1997年提出一種新型的同步整流電路,稱為準方波同步整流,可以較大地降低同步整流管體二極管的導通損耗與反向恢復損耗,并且容易實現初級主開關管的軟開關。凌特公司推出的同步整流控制芯片LTC3900和LTC3901可以更好地應用于正激、推挽及全橋拓撲中。
ZVS及ZCS同步整流技術也已開始應用,例如有源鉗位正激電路的同步整流驅動(NCP1560),雙晶體管正激電路的同步整流驅動芯片LTC1681及LTC1698,但其都未取得對稱型電路拓樸ZVS/ZCS同步整流的優(yōu)良效果。
1.2 建模與仿真
開關型變換器主要有小信號與大信號分析兩種建模方法。
小信號分析法:主要是狀態(tài)空間平均法,由美國加里福尼亞理工學院的R.D.Middlebrook于1976年提出,可以說這是電力電子學領域建模分析的第一個真正意義的重大突破。后來出現的如電流注入等效電路法、等效受控源法(該法由我國學者張興柱于1986年提出)、三端開關器件法等,這些均屬于電路平均法的范疇。平均法的缺點是明顯的,對信號進行了平均處理而不能有效地進行紋波分析;不能準確地進行穩(wěn)定性分析;對諧振類變換器可能不大適合;關鍵的一點是,平均法所得出的模型與開關頻率無關,且適用條件是電路中的電感電容等產生的自然頻率必須要遠低于開關頻率,準確性才會較高。
大信號分析法:有解析法,相平面法,大信號等效電路模型法,開關信號流法,n次諧波三端口模型法,KBM法及通用平均法。還有一個是我國華南理工大學教授丘水生先生于1994年提出的等效小參量信號分析法,不僅適用于PWM變換器也適用于諧振類變換器,并且能夠進行輸出的紋波分析。
建模的目的是為了仿真,繼而進行穩(wěn)定性分析。1978年,R.Keller首次運用R.D.Middlebrook的狀態(tài)空間平均理論進行開關電源的SPICE仿真。近30年來,在開關電源的平均SPICE模型的建模方面,許多學者都建立了各種各樣的模型理論,從而形成了各種SPICE模型。這些模型各有所長,比較有代表性的有:Dr.SamBenYaakov的開關電感模型;Dr.RayRidley的模型;基于Dr.VatcheVorperian的Orcad9.1的開關電源平均Pspice模型;基于StevenSandler的ICAP4的開關電源平均Isspice模型;基于Dr.VincentG.Bello的Cadence的開關電源平均模型等等。在使用這些模型的基礎上,結合變換器的主要參數進行宏模型的構建,并利用所建模型構成的DC/DC變換器在專業(yè)的電路仿真軟件(Matlab、Pspice等)平臺上進行直流分析、小信號分析以及閉環(huán)大信號瞬態(tài)分析。
評論