無源無損緩沖電路及其新拓?fù)?/h1>
摘要:在分析無源無損緩沖電路的無損緩沖電路的結(jié)構(gòu)原理和一般實現(xiàn)方法。重點介紹了其在DC/DC變換器中兩種新穎的http://cafeforensic.com/article/179409.htm關(guān)鍵詞:無源無損緩沖電路;DC/DC變換器;功率因數(shù)校正
1 概述
在硬開關(guān)電路中,有源開關(guān)器件連接在剛性的電壓源或電流源上,開關(guān)損耗大、電磁干擾嚴(yán)重、可靠性低,且隨著開關(guān)頻率的提高,這種現(xiàn)象更為嚴(yán)重。為了克服這些缺陷,軟開關(guān)技術(shù)被廣泛采用。
有源緩沖電路、RCD緩沖電路、諧振變換器、無源無損緩沖電路是常用的軟開關(guān)技術(shù)。其中,有源緩沖電路通過增添輔助開關(guān)以減少開關(guān)損耗,但這也增加了主電路和控制電路的復(fù)雜程度,從而增大了性價比,也降低了可靠性;RCD緩沖電路雖然結(jié)構(gòu)最簡單,價格最便宜,但由于電阻消耗了能量,效率較低,在各種軟開關(guān)技術(shù)中性能最差;而諧振變換器雖然實現(xiàn)了ZVS或ZCS,減少了開關(guān)損耗,但諧振能量必須足夠大,才能創(chuàng)造ZVS或ZCS條件,而且諧振電路中循環(huán)電流較大,還必須在特定的軟開關(guān)控制器的控制信號下工作,增加了通態(tài)損耗、增加了成本、降低了可靠性。與這三種方法不同,無源無損緩沖電路既不使用有源器件,也不使用耗能元件,因而兼具以上三種方法的優(yōu)點。其結(jié)構(gòu)與RCD緩沖電路一樣簡單,效率與有源緩沖電路、諧振變換器一樣高,電磁干擾小、造價低、性能好、可靠性高,因而獲得了廣泛的應(yīng)用。
目前,無源無損緩沖技術(shù)雖已比較成熟,但在國內(nèi)外仍不時有新的2 拓?fù)浞诸?
在過去的幾十年里,出現(xiàn)了許多不同的無源無損緩沖電路的拓?fù)浣Y(jié)構(gòu),它們可以用一套屬性來描述[1]。為此,可劃分為兩類:一類是最小電壓應(yīng)力單元(MVS),如圖1(a),圖1(b)所示;另一類是非最小電壓應(yīng)力單元(Non-MVS),如圖1(c),圖1(d),圖1(e),圖1(f)所示。最小電壓應(yīng)力單元[2]僅使用一個電感和電容值較小的電容就能使主開關(guān)管電壓應(yīng)力最小,但實現(xiàn)軟開關(guān)的范圍不大;非最小電壓應(yīng)力單元[3]增加了一個電感,同時也增加了主開關(guān)管的電壓應(yīng)力,但與最小電壓應(yīng)力單元相比,在同樣的電感和電容下,其軟開關(guān)范圍較大。而且,在小功率情況下,具有較高的效率。
(a) MVS (b) MVS
(c)Non-MVS (d)Non-MVS
(e)Non-MVS (f)Non-MVS
圖 1 無 源 無 損 緩 沖 電 路 拓 撲 結(jié) 構(gòu)
3 結(jié)構(gòu)原理與實現(xiàn)方法
硬開關(guān)電路在開關(guān)時,存在3種損耗:
1)開通時,由續(xù)流二極管的反向恢復(fù)電流引起的浪涌電流,會導(dǎo)致較大的導(dǎo)通損耗;
2)開通時,MOSFET的寄生結(jié)電容放電會引起損耗;
3)關(guān)斷時,MOSFET的結(jié)電容電壓的快速增加,會導(dǎo)致較大的關(guān)斷損耗。
針對硬開關(guān)電路的上述損耗構(gòu)成,一個基本的無源無損緩沖電路一般都包含3個功能電路:
1)開通緩沖電路;
2)關(guān)斷緩沖電路;
3)饋能電路。
常用的方法是用電感(L)與功率管串聯(lián),開通時電流只能從零增加,因而“零電流”使開通得到軟化;用電容(C)與功率管并聯(lián),關(guān)斷時功率管兩端電壓只能從零增大,因而“零電壓”使關(guān)斷得到軟化;用二極管(D)經(jīng)過一定的拓?fù)渚W(wǎng)絡(luò),在功率管開關(guān)過程中,將L,C中的存儲能量反饋到電源或饋送給負(fù)載。根據(jù)變換器電路的不同,電容可直接并聯(lián)于功率管,也可跨接于功率管輸出與負(fù)載之間,或跨接于功率管輸入端與電源正端之間。后兩種跨接方式都要求功率管關(guān)斷之前,電容C已充電到電源電壓的大小。饋能電路常用的方法有:當(dāng)要求一個電容的充電終了電壓要大于電源電壓時,則電源可通過電感給電容充電,如忽略損耗,充電終了電壓將達(dá)到2倍電源電壓;如一個充好電的電容,在工作中需要改變電壓極性,則可通過串聯(lián)一個電感實現(xiàn)振蕩放電來完成;電感還可用于將一個電容的儲能轉(zhuǎn)移到另一個電容中去,當(dāng)然這里還必須有二極管組成的電路配合;能量的存儲或轉(zhuǎn)移還可采用互感的方法等等。
無源無損緩沖電路的三功能電路結(jié)構(gòu)特點,雖然無法象有源軟開關(guān)方案那樣,在超前或滯后主開關(guān)的控制時序下吸收能量或供給能量,以創(chuàng)造出真正的ZVS或ZCS條件,但它通過將開關(guān)期間的電壓與電流波形錯開,使二者的重疊面積最小,可以顯著降低前述1)和3)項開關(guān)損耗。雖然對2)項的開關(guān)器件內(nèi)寄生結(jié)電容的放電損耗,無法被無源無損緩沖電路所消除,但此種損耗較其它開關(guān)損耗低得多,對于提高整體效率作用較小??紤]到無源無損緩沖電路沒有引入輔助有源器件,和其它軟開關(guān)方案相比,它沒有增加額外的輔助有源器件損耗,因此,在同樣的開關(guān)損耗功率降低情況下,無源無損緩沖電路可以獲得更高的效率提高[4]。所以,無源無損緩沖電路被廣泛地應(yīng)用于PWM變換器中。
4 無源無損緩沖電路在DC/DC變換器中的應(yīng)用
隨著電力電子技術(shù)、計算機技術(shù)、通信技術(shù)的發(fā)展,無源無損緩沖電路不僅廣泛應(yīng)用于PWM DC/DC變換器,PWMAC/DC整流器[5]和PWM DC/AC逆變器[6]中,而且與多電平變換器和PFC也有著密切的聯(lián)系[7]。以下介紹兩種無源無損緩沖電路在PWM DC/DC變換器中的最新拓?fù)浣Y(jié)構(gòu)。
4.1 再生式的無源無損緩沖電路
圖2為文獻(xiàn)[8]提出的一種無源再生式的軟開關(guān)Boost變換器,它是傳統(tǒng)的L+RCD復(fù)合型緩沖電路的改進(jìn)。其改進(jìn)點包括:
圖 2 再 生 式 無 源 無 損 緩 沖 電 路
1)去掉放電電阻R;
2)去掉專門的功率電感器L,巧妙地用一個同輸入電感Lp耦合的小功率繞組La代替。
下面分析圖2電路的工作過程。分析中假設(shè):
1)輸入電壓Vi恒定,主電感Lp遠(yuǎn)大于緩沖電感Ls,以致輸入電流Is恒定;
2)輸出電容Co足夠大,以致輸出電壓Vo恒定;
3)只考慮續(xù)流二極管D的反向恢復(fù)電流和主開關(guān)S的開關(guān)過渡時間,其它元器件均為理想的;
4)初始狀態(tài)為S關(guān)斷,D開通,iD=Is。
則對感性負(fù)載CCM工作情況,穩(wěn)態(tài)時每個周期可以分為以下6個模態(tài),相應(yīng)的等效電路圖和主要波形圖如圖3及圖4所示。
(a) 模 態(tài)1(t1~t2)等 效 電 路
DIY機械鍵盤相關(guān)社區(qū):機械鍵盤DIY
摘要:在分析無源無損緩沖電路的無損緩沖電路的結(jié)構(gòu)原理和一般實現(xiàn)方法。重點介紹了其在DC/DC變換器中兩種新穎的http://cafeforensic.com/article/179409.htm 關(guān)鍵詞:無源無損緩沖電路;DC/DC變換器;功率因數(shù)校正 1 概述 在硬開關(guān)電路中,有源開關(guān)器件連接在剛性的電壓源或電流源上,開關(guān)損耗大、電磁干擾嚴(yán)重、可靠性低,且隨著開關(guān)頻率的提高,這種現(xiàn)象更為嚴(yán)重。為了克服這些缺陷,軟開關(guān)技術(shù)被廣泛采用。 有源緩沖電路、RCD緩沖電路、諧振變換器、無源無損緩沖電路是常用的軟開關(guān)技術(shù)。其中,有源緩沖電路通過增添輔助開關(guān)以減少開關(guān)損耗,但這也增加了主電路和控制電路的復(fù)雜程度,從而增大了性價比,也降低了可靠性;RCD緩沖電路雖然結(jié)構(gòu)最簡單,價格最便宜,但由于電阻消耗了能量,效率較低,在各種軟開關(guān)技術(shù)中性能最差;而諧振變換器雖然實現(xiàn)了ZVS或ZCS,減少了開關(guān)損耗,但諧振能量必須足夠大,才能創(chuàng)造ZVS或ZCS條件,而且諧振電路中循環(huán)電流較大,還必須在特定的軟開關(guān)控制器的控制信號下工作,增加了通態(tài)損耗、增加了成本、降低了可靠性。與這三種方法不同,無源無損緩沖電路既不使用有源器件,也不使用耗能元件,因而兼具以上三種方法的優(yōu)點。其結(jié)構(gòu)與RCD緩沖電路一樣簡單,效率與有源緩沖電路、諧振變換器一樣高,電磁干擾小、造價低、性能好、可靠性高,因而獲得了廣泛的應(yīng)用。 目前,無源無損緩沖技術(shù)雖已比較成熟,但在國內(nèi)外仍不時有新的2 拓?fù)浞诸? 在過去的幾十年里,出現(xiàn)了許多不同的無源無損緩沖電路的拓?fù)浣Y(jié)構(gòu),它們可以用一套屬性來描述[1]。為此,可劃分為兩類:一類是最小電壓應(yīng)力單元(MVS),如圖1(a),圖1(b)所示;另一類是非最小電壓應(yīng)力單元(Non-MVS),如圖1(c),圖1(d),圖1(e),圖1(f)所示。最小電壓應(yīng)力單元[2]僅使用一個電感和電容值較小的電容就能使主開關(guān)管電壓應(yīng)力最小,但實現(xiàn)軟開關(guān)的范圍不大;非最小電壓應(yīng)力單元[3]增加了一個電感,同時也增加了主開關(guān)管的電壓應(yīng)力,但與最小電壓應(yīng)力單元相比,在同樣的電感和電容下,其軟開關(guān)范圍較大。而且,在小功率情況下,具有較高的效率。 (a) MVS (b) MVS (c)Non-MVS (d)Non-MVS (e)Non-MVS (f)Non-MVS 圖 1 無 源 無 損 緩 沖 電 路 拓 撲 結(jié) 構(gòu) 3 結(jié)構(gòu)原理與實現(xiàn)方法 硬開關(guān)電路在開關(guān)時,存在3種損耗: 1)開通時,由續(xù)流二極管的反向恢復(fù)電流引起的浪涌電流,會導(dǎo)致較大的導(dǎo)通損耗; 2)開通時,MOSFET的寄生結(jié)電容放電會引起損耗; 3)關(guān)斷時,MOSFET的結(jié)電容電壓的快速增加,會導(dǎo)致較大的關(guān)斷損耗。 針對硬開關(guān)電路的上述損耗構(gòu)成,一個基本的無源無損緩沖電路一般都包含3個功能電路: 1)開通緩沖電路; 2)關(guān)斷緩沖電路; 3)饋能電路。 常用的方法是用電感(L)與功率管串聯(lián),開通時電流只能從零增加,因而“零電流”使開通得到軟化;用電容(C)與功率管并聯(lián),關(guān)斷時功率管兩端電壓只能從零增大,因而“零電壓”使關(guān)斷得到軟化;用二極管(D)經(jīng)過一定的拓?fù)渚W(wǎng)絡(luò),在功率管開關(guān)過程中,將L,C中的存儲能量反饋到電源或饋送給負(fù)載。根據(jù)變換器電路的不同,電容可直接并聯(lián)于功率管,也可跨接于功率管輸出與負(fù)載之間,或跨接于功率管輸入端與電源正端之間。后兩種跨接方式都要求功率管關(guān)斷之前,電容C已充電到電源電壓的大小。饋能電路常用的方法有:當(dāng)要求一個電容的充電終了電壓要大于電源電壓時,則電源可通過電感給電容充電,如忽略損耗,充電終了電壓將達(dá)到2倍電源電壓;如一個充好電的電容,在工作中需要改變電壓極性,則可通過串聯(lián)一個電感實現(xiàn)振蕩放電來完成;電感還可用于將一個電容的儲能轉(zhuǎn)移到另一個電容中去,當(dāng)然這里還必須有二極管組成的電路配合;能量的存儲或轉(zhuǎn)移還可采用互感的方法等等。 無源無損緩沖電路的三功能電路結(jié)構(gòu)特點,雖然無法象有源軟開關(guān)方案那樣,在超前或滯后主開關(guān)的控制時序下吸收能量或供給能量,以創(chuàng)造出真正的ZVS或ZCS條件,但它通過將開關(guān)期間的電壓與電流波形錯開,使二者的重疊面積最小,可以顯著降低前述1)和3)項開關(guān)損耗。雖然對2)項的開關(guān)器件內(nèi)寄生結(jié)電容的放電損耗,無法被無源無損緩沖電路所消除,但此種損耗較其它開關(guān)損耗低得多,對于提高整體效率作用較小??紤]到無源無損緩沖電路沒有引入輔助有源器件,和其它軟開關(guān)方案相比,它沒有增加額外的輔助有源器件損耗,因此,在同樣的開關(guān)損耗功率降低情況下,無源無損緩沖電路可以獲得更高的效率提高[4]。所以,無源無損緩沖電路被廣泛地應(yīng)用于PWM變換器中。 4 無源無損緩沖電路在DC/DC變換器中的應(yīng)用 隨著電力電子技術(shù)、計算機技術(shù)、通信技術(shù)的發(fā)展,無源無損緩沖電路不僅廣泛應(yīng)用于PWM DC/DC變換器,PWMAC/DC整流器[5]和PWM DC/AC逆變器[6]中,而且與多電平變換器和PFC也有著密切的聯(lián)系[7]。以下介紹兩種無源無損緩沖電路在PWM DC/DC變換器中的最新拓?fù)浣Y(jié)構(gòu)。 4.1 再生式的無源無損緩沖電路 圖2為文獻(xiàn)[8]提出的一種無源再生式的軟開關(guān)Boost變換器,它是傳統(tǒng)的L+RCD復(fù)合型緩沖電路的改進(jìn)。其改進(jìn)點包括: 圖 2 再 生 式 無 源 無 損 緩 沖 電 路 1)去掉放電電阻R; 2)去掉專門的功率電感器L,巧妙地用一個同輸入電感Lp耦合的小功率繞組La代替。 下面分析圖2電路的工作過程。分析中假設(shè): 1)輸入電壓Vi恒定,主電感Lp遠(yuǎn)大于緩沖電感Ls,以致輸入電流Is恒定; 2)輸出電容Co足夠大,以致輸出電壓Vo恒定; 3)只考慮續(xù)流二極管D的反向恢復(fù)電流和主開關(guān)S的開關(guān)過渡時間,其它元器件均為理想的; 4)初始狀態(tài)為S關(guān)斷,D開通,iD=Is。 則對感性負(fù)載CCM工作情況,穩(wěn)態(tài)時每個周期可以分為以下6個模態(tài),相應(yīng)的等效電路圖和主要波形圖如圖3及圖4所示。 (a) 模 態(tài)1(t1~t2)等 效 電 路
DIY機械鍵盤相關(guān)社區(qū):機械鍵盤DIY
評論