一種混合信號通用電池充電器設(shè)計
策略和方法
對混合信號的設(shè)計采用分兩部分的方式,首先選擇單片機,用于讀取電池組狀態(tài)(電壓和溫度),并對SEPIC穩(wěn)壓器輸出電流編程,本文選擇使用PIC12F6838引腳閃存單片機。然后,再選擇內(nèi)置MOSFET驅(qū)動器的高速模擬PWM控制器(如MCP1630),組成“模擬”可編程電流源。
設(shè)計SEPIC可編程電流源
與所有開關(guān)式穩(wěn)壓器設(shè)計一樣,輸出是通過改變占空比,或開關(guān)導通時間的比例(Q1,見圖2)來控制的。為穩(wěn)定流入電池的電流,必須檢測充電電流。如圖2所示,電流檢測元件并沒有與電池串聯(lián)。SEPIC穩(wěn)壓器次級繞組Ls承載平均輸出電流。初級繞組Lp承載平均輸入電流。次級電阻Rs用來檢測電池充電電流。高速模擬PWM參考輸入則決定電池充電電流。
利用MCP1630作為模擬PWM和驅(qū)動器,可以獲得一個可編程的SEPIC電流源。PWM和驅(qū)動器提供模擬穩(wěn)流功能、MOSFET柵極驅(qū)動以及高速過流保護。PIC12F683單片機設(shè)定SEPIC電源開關(guān)頻率(500 kHz)并編程設(shè)定SEPIC恒定輸出電流。PWM和驅(qū)動器利用單片機中的硬件PWM來設(shè)定SEPIC開關(guān)頻率和最大占空比。硬件PWM頻率等于SEPIC電源開關(guān)頻率,同時,硬件PWM占空比確定了最大SEPIC電源占空比。單片機的硬件PWM輸出500 kHz,25%占空比的脈沖將SEPIC開關(guān)頻率設(shè)定為500 kHz,最大占空比75%。標準單片機I/O引腳利用簡單的RC濾波器生成軟件可編程的參考電壓。這一可編程的參考電壓用來設(shè)定SEPIC轉(zhuǎn)換器輸出精確恒定的充電電流。 在同相輸入(Vref)端,可編程參考電壓確定了電池充電電流值。調(diào)整MCP1630 PWM輸出占空比(Vext),直到Vref輸入電壓與誤差放大器FB輸入端電壓相等。通過調(diào)節(jié)Vref 輸入引腳的電壓就可相應(yīng)調(diào)整電池電流。 PWM和驅(qū)動器能夠以大于 500 kHz的頻率驅(qū)動MOSFET,同時利用一個內(nèi)部高速(典型值為12ns)比較器來監(jiān)測SEPIC開關(guān)電流。如果開關(guān)電流太大,PWM占空比就會為0,從而限制電池電流。
最后,充電電流還將根據(jù)來自ADC的電池電壓和溫度等信息進行調(diào)節(jié)。要進入恒壓充電階段,單片機的ADC讀取電池電壓并更新可編程電流源(SEPIC),以保持電池電壓為4.2V。這一過程的電池電壓變化速率遠快于恒流充電時的速率。對于鋰離子電池,當維持電池電壓為4.2V所需要的電流降低到一定值(100mA)時,充電周期結(jié)束。這是利用固件設(shè)定的,并且可以方便地修改以滿足不同電池生產(chǎn)商的推薦值。在典型的模擬充電器中,充電結(jié)束電流是充電周期電流的一定比例,因此不容易改變。對鎳氫電池,快速充電階段結(jié)束時,需要滿足下面一個條件或同時滿足兩個條件:電池電壓保持恒定或隨著時間下降,或者電池組溫度高于預定值??焖俪潆娊Y(jié)束后,就開始進行定時涓流浮充。ADC輸入和電池組熱電偶相配合可以檢測電池溫度。通過讀出“TEMP_SENSE”輸入端的電壓,可以確定電池溫度。當檢測到電池電壓太高時,PIC12F683 中斷代碼可以提供過壓保護(OV)。SEPIC轉(zhuǎn)換器在不到1ms的時間內(nèi)關(guān)斷,在電池端接端造成的電壓過沖最小。SEPIC轉(zhuǎn)換器二極管阻止電池向充電器放電。從電池流出的靜態(tài)電流只有電池電壓檢測一個通道,此時的電流大小通常不到5 mA。
可選的特性
此外,結(jié)合一個單片機和多個高速模擬PWM模塊還可以增加更多功能,例如針對多組電池充電應(yīng)用的充電器組,異相開關(guān)技術(shù)以及輸入電源預算功能。
結(jié)語
在開發(fā)電池充電器時采用混合信號方式,可以充分發(fā)揮模擬和數(shù)字兩方面的優(yōu)點?;诨旌闲盘柕脑O(shè)計支持高頻工作(500kHz)、高速保護(12ns,從電流檢測到輸出),并可將濾波器件的尺寸縮到最小。此外,系統(tǒng)的可編程數(shù)字功能還可以準確判斷充電的不同階段并設(shè)定充電電流。 由于可以容易地進行電流設(shè)置和編程,因此,通過固件就可以支持新的電池充電方法,這種設(shè)計并不僅僅適用于鋰離子和鎳氫電池,同時還可通過編程支持未來的可充電技術(shù)。
電能表相關(guān)文章:電能表原理
評論