色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 電源與新能源 > 設計應用 > 三相高頻PWM整流器的預測電流控制

          三相高頻PWM整流器的預測電流控制

          作者: 時間:2005-09-09 來源:網絡 收藏

          摘要:研究了的數學模型,分析了方法的基本原理,給出了電壓環(huán)路計算的方法。最后給出了實驗結果。

          關鍵詞:;;原理與計算

          引言

          傳統的相控和二級管整流器存在功率因數低、諧波含量高、對電網污染嚴重等缺點。整流器功率因數可達1,輸入電流為正弦,且可向電網回饋能量,克服了傳統整流器的缺點。高頻PWM整流器在控制算法上一般采用電壓、電流雙環(huán)設計,以控制直流輸出電壓的穩(wěn)定并使輸入電流為正弦。在電流控制算法上,常常采用將模型轉換到同步旋轉的dq坐標系的方法,以實現d、q軸電流的解耦控制為目標,這種算法常常需要鎖相環(huán)等環(huán)節(jié)實現d、q軸的定位,比較復雜。本文研究了一種電流控制法,能實現對電流的快速響應,且實現簡單。

          圖1

          1 高頻PWM整流器模型和預測電流控制的基本原理

          三相電壓型高頻PWM整流器主電路如圖1所示。由圖1可得

          式中:USa,USb,USc分別為三相電源電壓;

          iSa,iSb,iSc為相應的三相電流;

          UCa,UCb,UCc分別為A,B,C三點處的電壓,為三個控制量,決定于各橋臂的占空比和直流輸出電壓;

          L為各相串聯電感的電感量。

          用前向差商代替微分對式(1)離散化,得

          式中:Ts為采樣周期。

          為了減小時延的影響,可利用已知狀態(tài),預測下一個采樣時刻達到電流iSi*所需的控制電壓USi*,因此,由式(2)可得

          式(3)的意義是,根據當前已知的狀態(tài)變量USi(k)及iSi(k)和參數值Ts及L以及下一步指令電流值iSi*(k+1),預測使電流在第k+1步達到iSi*(k+1)所需的電壓UCi*(k)。如果在此瞬間在圖1的A、B、C三點處能分別得到式(3)所要求的電壓,那么在第k+1步即可得到所需要的電流iSi(k+1)。

          式(3)中預測電流值由式(4)得出

          式中:I*為直流輸出電流的指令值,在穩(wěn)態(tài)時為一個恒定直流量。

          圖2

          穩(wěn)態(tài)時USa2+USb2+USc2及Uo也為恒定直流量,因此,iSi*與USi成正比。由于USi為正弦,因此,預測電流值(即電流指令)iSi*與輸入電壓形狀相同,都為正弦,相位也相同,實現了功率因數為1的控制。由式(4)得

          這說明式(4)式保證了輸入輸出功率的平衡,即按式(4)給出的電流預測值既可控制輸入電流的波形,也可控制其大?。ㄒ蚨部刂屏溯敵龉β实拇笮。?。

          2 控制環(huán)路的設計

          采用預測電流控制方法后,電流環(huán)的響應非???,可用一個一階慣性環(huán)節(jié)代替。雖然三相電流是各自正弦變化的,但從功率平衡角度來說,等效于直流電壓、電流的變化。因此,整個系統的控制環(huán)路可等效為圖2結構。

          圖2中C為電解電容的電容值。直流輸出電流指令I*由輸出直流電壓的指令Uo*和反饋值Uo之差e=Uo*-Uo放大得到。

          由式(4)可見,為了保證輸入電流的正弦形,指令電流I*的波動要盡量平緩,換句話說由式(6)決定的輸出電壓控制器的帶寬要盡量地窄。由于電網頻率為50Hz,因此,電壓環(huán)的帶寬要遠低于50Hz。但為了使動態(tài)響應時間不至于過慢,帶寬又要求越寬越好。綜合上述兩方面因素,實際系統中轉折頻率取為ω=1/τ=2π5s-1。由于采樣周期Ts很小,帶寬又很低,高頻濾波環(huán)節(jié)影響很小,因此,式(7)可簡化為G=(Kp/τ C)(1+sτ)/s2,其波特圖如圖3所示。圖3中τ=30ms,電壓環(huán)的放大倍數Kp=C/(2τ),相角裕度約45。按此設計的PI調節(jié)器參數可以使系統絕對穩(wěn)定。

          圖4

          3 矢量控制算法

          按式(3)算出的各相電壓值與三角波比較,可得出各橋臂的開關時刻,這就是一般的SPWM法,如圖4(a)所示。

          也可采用矢量控制法,其本質是對零狀態(tài)的控制。如可令一個PWM周期中的三相線電壓為零的狀態(tài)(即零矢量狀態(tài))全部固定為上橋臂全導通,如圖4(b)所示。這時三相調制電壓變?yōu)?/P>

          并有

          可見,三相調制電壓同時偏移某個值后其合成的空間電壓矢量不變,因而控制效果不變。但這樣處理帶來許多好處,如開關次數降低、母線電壓利用率提高、轉換效率提高等。

          4 實驗結果

          為了驗證所提出的三相高頻整流器最小損耗控制方法的正確性,試制了一臺3kW樣機并進行了實驗研究。其中濾波電感為6mH,濾波電容為500μF,開關頻率為10kHz??刂齐娐芬訢SP(TMS320LF2407A)為核心構成全數字化控制器,如圖5所示。電流環(huán)、電壓環(huán)和空間矢量PWM算法全部由軟件實現。圖6(a)為交流輸入電壓為三相250V,輸出直流電壓為500V時的輸入電壓、電流和直流輸出電壓波形圖,圖6(b)為交流輸入電壓為三相380V,輸出直流電壓為600V時相應的波形圖??梢娸斎腚娏鳛檎也ㄇ遗c輸入電壓相位是一致的。當輸入電壓與輸出電壓差別較大時,電流控制得更好些。

          5 結語

          本文研究了一種三相高頻PWM整流器的電流控制方法,能實現對電網電流快速、精確的控制。分析了系統的環(huán)路傳遞函數,給出了設計方法。指出采用矢量控制可降低開關次數和開關損耗,提高系統的運行效率。最后給出了實驗結果。

          基爾霍夫電流相關文章:基爾霍夫電流定律


          pwm相關文章:pwm原理




          評論


          相關推薦

          技術專區(qū)

          關閉