利用Pspice分析放大器環(huán)路的穩(wěn)定性
大部分Pspice仿真器都允許使用圖6所示的“.STEP PARAM”語句來進行多級仿真并顯示迭加的結(jié)果。其它仿真器可能有專用命令來實現(xiàn)此類同步仿真功能。最優(yōu)CF值在噪聲增益函數(shù)與LMH6629的開環(huán)增益曲線相交頻率處給噪聲增益函數(shù)設(shè)置了一個極點。由圖6可知,在本例中,CF=0.25pF。
大于0.25pF的更高CF值將會帶來帶寬損失,相應(yīng)地,若CF低于0.25pF,相位裕度又將不足。如果CF足夠高(本例中是7pF),噪聲增益曲線有可能在低于20dB處與開環(huán)曲線相交。20dB是LMH6629的最小穩(wěn)定增益。這種情況下電路可能將不再穩(wěn)定或者放大器可能出現(xiàn)過高頻率響應(yīng)峰值。因此必須有一個穩(wěn)定范圍和最優(yōu)值。
圖7所示的是當CF=0.25pF時,頻率函數(shù)LG的結(jié)果曲線。在沒有CF的情況下,相位裕度從原來的0o增加到61o。
圖7:開環(huán)曲線繪制驗證CF令相位裕度得以改善。
找到最優(yōu)CF值后,可以重新查看初始的閉環(huán)配置(沒有大電感和電容加入到LG和NG的研究中),在使用最優(yōu)CF值(此時是0.25pF)的情況下可以得到階躍響應(yīng)。圖8顯示了面向不同CF的響應(yīng)曲線,證實了CF值不論是偏大或是偏小,都會造成系統(tǒng)的不穩(wěn)定,或是振鈴時間和穩(wěn)定時間的延長;而最優(yōu)CF值可以在最小振鈴下實現(xiàn)非常好的階躍響應(yīng)。顯然,無論CF取值0pF還是7pF,電路都非常地不穩(wěn)定。這表明7pF時的振蕩頻率遠高于0pF時的振蕩頻率,并不是因為噪聲增益與放大器開環(huán)增益曲線的交接頻率較高(如圖6所預測的那樣)。
圖8:不同CF對應(yīng)的閉環(huán)階躍響應(yīng)。
實際考慮和實驗結(jié)果比較
利用基于Pspice的分析方法來研究合適的補償值,并通過仿真找到最佳響應(yīng)時的參數(shù)值后,接下來就是在實驗臺上驗證仿真結(jié)果。圖9為一個實驗臺的驗證設(shè)置示意圖。
圖9:TIA補償實驗臺驗證設(shè)置。
以下是圖9實驗臺設(shè)置的一些要點。
低電容值和實驗臺優(yōu)化:為降低有效電容值,可以將RA、RB串在一起并與CF鄰接,這樣可以用一個市場上容易找到的電容(>1pF)來獲取皮法以下的電容值,而該值很難直接獲得。只要RB RF,該電路即可將CF的等效電容值降低1+ RB/RA倍。該方法可以得到一個0.20pF的等效電容,選用這樣的設(shè)置是因為0.25pF的仿真值會產(chǎn)生過阻尼實驗臺響應(yīng)。物理電路板會存在一定的寄生電感和電容,它們可以被最小化,但是不能完全降低到0。因此,人們希望通過實驗臺測試來促進對仿真結(jié)果的優(yōu)化,特別是在處理皮法級以下的標稱值時。等效電容為0.20pF時,檢測到的帶寬為70MHz;而當?shù)刃щ娙轂?.25pF時,帶寬下降至55MHz。
等效光電二極管實驗臺設(shè)置:為便于測試,所示的(Rin, Cin以及CD)前端配置允許使用標準的50?實驗室設(shè)備來模擬光電二極管的性能。這里CD(假設(shè)為光電二極管電容)被設(shè)定為10pF。
評論