基于stm32f4的三維旋轉(zhuǎn)顯示平臺(tái)
3.系統(tǒng)軟件設(shè)計(jì)
本文引用地址:http://cafeforensic.com/article/201609/296520.htm3.1軟件控制流程:
3.2關(guān)于實(shí)時(shí)生成體三維顯示數(shù)據(jù)的討論:
一個(gè)瓦片64*32
LED層FPGA*8:每個(gè)16*16LED
中間層stm32*2:每個(gè)4LED層的FPGA,也即32*32
由于經(jīng)過(guò)壓縮,一個(gè)led數(shù)據(jù)為4bits
所以一個(gè)stm32每一幀所要生成的數(shù)據(jù)為32*32*0.5bytes = 512bytes
轉(zhuǎn)速800轉(zhuǎn),一幀1/800s = 1.25ms = 1250000ns
stm32f4主頻168Mhz,指令周期 = 5.93ns
約可執(zhí)行20萬(wàn)多條指令
假設(shè)fsmc總線的速度為50Mhz,則每幀寫入的時(shí)間大概在0.02ms內(nèi)
程序總體思路
事先算出所有電子幀上非零的點(diǎn),以及連續(xù)0的個(gè)數(shù),在每一個(gè)電子幀同步后,算出生成下一幀的數(shù)據(jù),寫入fifo
輸入:線段端點(diǎn)的集合
//input: endpoints of segments which formed the outline of a 3D model
//x position with range 0-95
//y position with range 0-95
//z position with range 0-128
/******************************************/
//from later discussion, one of the Q format
//type should replace the char type
/******************************************/
struct Coordinate_3D
{
_iq xPosition;
_iq yPosition;
_iq zPosition;
};
//after you get the intersection points in 3d coordinate, you need to remap it into 2d coordinate on the very electrical plane,
//and the conversion is quite simple Coordinate_2D.yPosition = Coordinate_3D.zPosition; Coordinate_2D.xPosition = sqrt(xPosition^2+yPosition^2)
struct Coordinate_2D
{
char xPosition;
char yPosition;
};
struct Line
{
struct Coordinate_3D beginPoint;
struct Coordinate_3D endPoint;
unsigned char color;
};
//frame structure to store the visible points in one electrical frame
//need to be discussed
//here's the prototype of the Frame structure, and basically the frame struture should contain the visible points,
//and the zero points. As we have enclosed the number of zero points after each visible points in their own data structure,
//only the number of zero points at the beginning of the whole frame should be enclosed in the frame struture
struct Frame
{
int zerosBefore;
PointQueue_t visiblePointQueue;
};
//we need a union structure like color plane with bit fields to store the color imformation of every four FPGAs in one data segment
//actually, it's a kind of frustrateing thing that we had to rebind the data into such an odd form.
union ColorPalette
{
struct
{
unsigned char color1 : 4;
unsigned char color2 : 4;
unsigned char color3 : 4;
unsigned char color3 : 4;
}distributedColor;
unsigned short unionColor;
};
//and now we need a complete point structure to sotre all the imformation above
//here we add a weight field = yPosition*96 + xPosition, which will facilitate
//our sort and calculation of the zero points number between each visible point
//it's important to understand that, 4 corresponding points on the LED panel
//will share one visiblepoint data structure.(一塊stm32負(fù)責(zé)4塊16*16的LED,每塊對(duì)應(yīng)的點(diǎn)的4位顏色信息,拼成16位的數(shù)據(jù)段)
struct VisiblePoint
{
struct Coordinate_2D coord;
union Colorplane ColorPalette;
int weight;
int zerosAfter;
};
//as now you can see, we need some thing to store the visible points array
typedef struct QueueNode
{
struct VisiblePoint pointData;
struct QueueNode * nextNode;
}QueueNode_t, *QueueNode_ptr;
typedef struct
{
QueueNode_ptr front;
QueueNode_ptr rear;
}PointQueue_t;
//finally, we will have 16*16 words(16 bits)to write into the fifo after each electrial frame sync cmd.
//it may hard for us to decide the frame structure now, let's see how will the work flow of the algorithm be.
//firstly, the overall function will be like this
void Real3DExt(struct Line inputLines[], int lineNumber, struct Frame outputFrames[])
//then we need some real implementation function to calculate the intersection points
//with 0 = no intersection points, 1 = only have one intersection points, 2 = the input line coincides the given electrical plane
//2 need to be treated as an exception
//the range of the degree is 0-359
//it's important to mention that each intersection point we calculate, we need to
//remap its coordinate from a 32*32 field to x,y = 0-15, as each stm32 only have a 32*32
//effective field(those intersection points out of this range belong to other stm32), which can be decided by its address
int InterCal(struct Line inputLine, struct VisiblePoint * outputPoint, int degree)
//so we will need something like this in the Real3DExt function:
for (int j = 0; j < 360; j++)
{
for(int i = 0; i < lineNumber; i++ )
InterCal(struct Line inputLine, struct VisiblePoint outputPoint, int degree);
......
}
/******************************************/
//simple float format version of InterCal
/******************************************/
//calculate formula
//Q = [-1,1,-1];
//P = [1,1,-1];
//V = Q - p = [-2,0,0];
//Theta = pi/6;
//Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);
//Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);
//Result = Q - (Tmp0/Tmp1)*V
float32_t f32_point0[3] = {-1.0f,1.0f,-1.0f};
float32_t f32_point1[3] = {1.0f,1.0f,-1.0f};
float32_t f32_directionVector[3], f32_normalVector[3], f32_theta,
f32_tmp0, f32_tmp1, f32_tmp2, f32_result[3];
arm_sub_f32(f32_point0,f32_point1,f32_directionVector,3);
f32_theta = PI/6.0f;
f32_normalVector[0] = arm_sin_f32(f32_theta);
f32_normalVector[1] = arm_cos_f32(f32_theta);
f32_normalVector[2] = 0.0f;
arm_dot_prod_f32(f32_point0, f32_normalVector, 3, &f32_tmp0);
arm_dot_prod_f32(f32_directionVector, f32_normalVector, 3, &f32_tmp1);
f32_tmp2 = f32_tmp0/f32_tmp1;
arm_scale_f32(f32_normalVector, f32_tmp2, f32_normalVector, 3);
arm_sub_f32(f32_point0, f32_normalVector, f32_result, 3);
//and than we need to decide whether to add a new visible point in the point queue, or to update
//the color field of a given point in the point queue(as 4 visible point share one data structure). from this point, you will find that, it may be
//sensible for you not to diretly insert a new point into the end of point queue but to insert it in order
//when you build the pointqueue. it seems more effective.
void EnPointQueue(PointQueue_t * inputQueue, QueueNode_t inputNode);
//finally we will get an sorted queue at the end of the inner for loop
//than we need to calculate the number of invisible points between these visible points
//and to store it in each frame structure. the main purpose to do so is to offer an quick generation
//of the blank point(color field = 16'b0) between each electrical frame
//the work flow will be like this:
loop
{
dma output of the blank points;
output of the visible points;
}
/******************************************/
//some points need more detailed discussion
/******************************************/
//1.memory allocation strategy
//a quite straight forward method will be establishing a big memnory pool in advance, but the drawback of this method
//is that it's hard for you to decide the size of the memory pool. Another way would be the C runtime library method,
// and you can use build-in function malloc to allocate the memory, but it will be a quite heavy load for the m3 cpu
// as you need dynamic memeory allocation throughout the algorithm.
//2.the choice of Q format of the IQMATH library
//from the discussion above, the range of the coordnate is about 1-100, but the range of sin&cos is only 0-1,so there's a large gap between them.
//may be we can choose iq24?? Simultaneously, another big problem will be the choice between IQMATH and arm dsp library as their q format is
//incompatible with each other. as far as my knowledge is concerned, we should choose IQMATH with m3 without fpu, and cmsis dsp library with m4 with fpu.
//more detail discussion about the range of the algorithm
//x,y range is -64 to 64
//the formula is
//Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);
//Tmp0 range is -128 to 128
//Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);
//Tmp1 range is -128 to 128
//Result = Q - (Tmp1/Tmp2)*V
//because the minimal precision of the coordinate is 1, so if the result of Tmp1/Tmp2 is bigger than 128, the Result will be
//saturated. With the same reson, if (Tmp1/Tmp2)*V >= 128 or <= -127, the result will be saturated
4.系統(tǒng)創(chuàng)新
其一,由于高效解析算法的提出,大幅簡(jiǎn)化了真三維顯示器顯示數(shù)據(jù)的獲取難度,只需在PC端獲得當(dāng)前較為標(biāo)準(zhǔn)化的三維圖形的三角面頂點(diǎn)數(shù)據(jù)流文件,即可在真三維顯示平臺(tái)上顯示出來(lái),使得真三維顯示器的整體顯示流程大為簡(jiǎn)化。
其二,由于顯示體的結(jié)構(gòu)分為并行的若干區(qū)塊,各個(gè)區(qū)塊只顯示自身的部分,因此顯示屏幕的擴(kuò)大并不會(huì)造成數(shù)據(jù)計(jì)算量的大幅增加,這就使得本顯示器的擴(kuò)展性大大增強(qiáng),可以適用于多種多樣的顯示范圍與領(lǐng)域。
其三,由于高效算法的優(yōu)化與區(qū)塊化顯示的優(yōu)勢(shì),并行結(jié)構(gòu)的計(jì)算量相對(duì)較少,這就使得實(shí)時(shí)控制得以實(shí)現(xiàn),大大增強(qiáng)了真三維顯示器的應(yīng)用領(lǐng)域。
其四,高效算法與區(qū)塊化顯示使得本三維體顯示器不需要如國(guó)內(nèi)外其他同類產(chǎn)品的中所需的高速傳輸方式,因此大大減少了從產(chǎn)品研發(fā)到材料再到加工中各個(gè)環(huán)節(jié)的成本。
5.評(píng)測(cè)與結(jié)論
在作品的過(guò)程中,我們發(fā)現(xiàn)本作品雖然還不是很成熟,也同樣具備較大的應(yīng)用前景與價(jià)值。價(jià)格成本的極大降低,使得真三維立體顯示的門檻很低,那么在一些對(duì)清晰度要求不高,但是希望多層次全角度呈現(xiàn)三維圖像的應(yīng)用領(lǐng)域,我們的真三維立體顯示器能發(fā)揮較大的作用。
附錄
評(píng)論