漸開線圓柱齒輪幾何參數(shù)計算的計算機輔助設計系統(tǒng)
α2 = Math.PI * α1 / 180;
β2 = Math.PI * β1 / 180;
n = Math.Cos(β2);
u = 1;
m = Convert.ToDouble(tBoxm.Text);
ha = Convert.ToInt32(tBoxha.Text);
hat = ha * n;
c = Convert.ToDouble(tBoxc.Text);
ct = c * n;
r = Convert.ToDouble(tBoxr.Text);
rt = r * n;
if (tBoxpa_s.Enabled) //標準齒輪幾何參數(shù)計算
{
Z0 = Convert.ToInt32(tBoxZ1.Text);
ha01 = ha * m;
hf0 = 1.25 * m;
h0 = ha01 + hf0;
if (tBoxβ.Text != 0)
{
a0 = Z0 * m / n;
d0 = m * Z0 / n;
}
else
{
a0 = Z0 * m;
d0 = m * Z0;
}
a = a0;
da0 = d0 + 2 * ha01;
df0 = d0 - 2 * hf0;
db0 = d0 + Math.Cos(α2);
pa = Math.PI * m * Math.Cos(α2);
//標準齒輪齒厚計算
sc0 = 0.5 * Math.PI * m * Math.Cos(α2) * Math.Cos(α2);
hc0 = ha01 - Math.PI * m * Math.Sin(2 * α2) / 8;
invαt = Math.Tan(α2) - α2;
if (tBoxβ.Text != 0)
{
s0 = m * Z0 * Math.Sin(Math.PI * n * n * n / (2 * Z0)) / (n * n * n);
ha02 = 0.5 * da0 - (0.5 * m * Z0 / (n * n * n)) * (Math.Cos(Math.PI * n * n * n / (2 * Z0)) - Math.Sin(β2) * Math.Sin(β2));
k0 = (α1 / 180) * Z0 + 1;
W0 = (Math.PI * (k0 - 0.5) + Z0 * invαt) * m * Math.Cos(α2);
}
else
{
s0 = m * Z0 * Math.Sin(Math.PI / (2 * Z0));
ha02 = 0.5 * da0 - 0.5 * m * Z0 * Math.Cos(Math.PI / (2 * Z0));
k0 = (α1 / 180) * Z0 + 1;
W0 = (Math.PI * (k0 - 0.5) + Z0 * invαt) * m * Math.Cos(α2);
}
}
計算外嚙合和內嚙合各種齒輪,原理基本一樣,重點注意的是取值的精確度問題,以及弄清各參數(shù)之間的關系,以便于計算,避免數(shù)值的混淆。
2、確定部分重要精度參數(shù)的取值函數(shù)
public static int fpb_value(double x, double y, string z) //基節(jié)極限偏差fpb取值
{…}
public static int Fβ_value(int x, string y) //齒向公差Fβ取值
{…}
public static double fa_value(double x, string y) //中心距極限偏差fa取值
{…}
public static int fpt_value(double x, double y, string z) //齒距極限偏差fpb取值
{…}
public static int Fr_value(double x, double y, string z) //齒圈徑向跳動公差Fr取值
{…}
public static double br_value(string x, double d) //切齒徑向進刀公差br取值
{…}
public static char code_value(double x) //偏差代號
{…}
3.4.2軟件實現(xiàn)和傳統(tǒng)人工計算的比較
對齒輪進行設計時,傳統(tǒng)的人工計算具有很大的局限性,下面就列舉兩個比較突出的例子進行比較說明。
1、在計算幾何參數(shù)時,已知參數(shù)invα且invα=tanα-α,要番過來求α的值,此設計中我使用的二分法查找的思想來求解(代碼如下),其中取值的精度精確到了10-8。如果如此龐大的計算量進行人工計算,工作量可想而知,而且有存在很大的誤差甚至是錯誤的可能,但借用了此計算機輔助軟件,立刻就可以得到滿意的答案。
private double inv(double x)
{
double f = 0, r = Math.PI / 2, b, fun; //設置變量f,r,b,fun
b = Math.PI / 4; //因為0α(π/2),所以取第一個二分時b=π/4
fun = Math.Tan(b) - b; //求出當b=π/4時fun的值
while (Math.Abs(fun - x) > 0.00000001) //當誤差小于10-8時跳出循環(huán)
{
if (fun - x > 0) //若fun大于x,取中間值的左邊區(qū)間進行循環(huán)
{
r = b;
b = (f + r) / 2; //取新區(qū)間的中值
fun = Math.Tan(b) - b;
}
else if (fun - x 0) //若fun小于x,取中間值的右邊區(qū)
評論