電荷泵的工作原理及常用電路
電荷泵的結(jié)構(gòu)
電容式電荷泵通過開關(guān)陣列和振蕩器、邏輯電路、比較控制器實(shí)現(xiàn)電壓提升,采用電容器來貯存能量。電荷泵是無須電感的,但需要外部電容器。由于工作于較高的頻率,因此可使用小型陶瓷電容(1mF),使空間占用小,使用成本低。電荷泵僅用外部電容即可提供±2 倍的輸出電壓。其損耗主要來自電容器的ESR(等效串聯(lián)電阻)和內(nèi)部開關(guān)晶體管的RDS(ON)。電荷泵轉(zhuǎn)換器不使用電感,因此其輻射EMI可以忽略。輸入端噪聲可用一只小型電容濾除。它的輸出電壓是工廠生產(chǎn)精密預(yù)置的,調(diào)整能力是通過后端片上線性調(diào)整器實(shí)現(xiàn)的,因此電荷泵在設(shè)計(jì)時(shí)可按需要增加電荷泵的開關(guān)級(jí)數(shù),以便為后端調(diào)整器提供足夠的活動(dòng)空間。電荷泵十分適用于便攜式應(yīng)用產(chǎn)品的設(shè)計(jì)。從電容式電荷泵內(nèi)部結(jié)構(gòu)來看,如圖2 所示它實(shí)際上是一個(gè)片上系統(tǒng)。
圖2 電容式電荷泵內(nèi)部結(jié)構(gòu)
電荷泵工作原理
電荷泵變換器的基本工作原理如圖3所示。它由振蕩器、反相器及四個(gè)模擬開關(guān)組成,外接兩個(gè)電容C1、C2 構(gòu)成電荷泵電壓反轉(zhuǎn)電路。
振蕩器輸出的脈沖直接控制模擬開關(guān)S1及S2;此脈沖經(jīng)反相器反相后控制S3及S4。當(dāng)S1、S2 閉合時(shí),S3、S4 斷開;S3、S4 閉合時(shí),S1、S2 斷開。
當(dāng)S1、S2 閉合、S3、S4 斷開時(shí),輸入的正電壓V+向C1 充電(上正下負(fù)),C1 上的電壓為V+;當(dāng)S3、S4閉合、S1、S2斷開時(shí),C1向C2放電(上正下負(fù)),C2上充的電壓為-VIN,即VOUT=-VIN。當(dāng)振蕩器以較高的頻率不斷控制S1、S2 及S3、S4 的閉合及斷開時(shí),輸出端可輸出變換后的負(fù)電壓(電壓轉(zhuǎn)換率可達(dá)99%左右)。
由圖3 可知,電荷泵電壓反轉(zhuǎn)器并不穩(wěn)壓,即有負(fù)載電流時(shí),輸出電壓將有變化。輸出電流與輸出電壓的變化曲線(輸出特性)稱為輸出特性曲線,其特點(diǎn)是輸出電流越大,輸出電壓變化越大。
一般以輸出電阻Ro來表示輸出電流與輸出電壓的關(guān)系。若輸出電流從零增加到Io時(shí),輸出電壓變化為△V,則輸出電阻Ro 為:
Ro = △V/Io
輸出電阻Ro 越小,輸出電壓變化越小,輸出特性越好。
如何選擇電荷泵
1、效率優(yōu)先,兼顧尺寸
如果需要兼顧效率和占用的 PCB 面積大小時(shí),可考慮選用電荷泵。例如電池供電的應(yīng)用中,效率的提高將直接轉(zhuǎn)變?yōu)楣ぷ鲿r(shí)間的有效延長(zhǎng)。通常電荷泵可實(shí)現(xiàn) 90% 的峰值效率,更重要的是外圍只需少數(shù)幾個(gè)電容器,而不需要功率電感器、續(xù)流二極管及 MOSFET。這一點(diǎn)對(duì)于降低自身功耗,減少尺寸、BOM 材料清單和成本等至關(guān)重要。
電容器相關(guān)文章:電容器原理
電路相關(guān)文章:電路分析基礎(chǔ)
dc相關(guān)文章:dc是什么
電荷放大器相關(guān)文章:電荷放大器原理 電流傳感器相關(guān)文章:電流傳感器原理 電容相關(guān)文章:電容原理 電容傳感器相關(guān)文章:電容傳感器原理
評(píng)論