紅外圖像的邊緣提取
r(x,y)=max{gi(x,y)|?坌i} (3)
設(shè)定閾值t,得到二值化邊緣圖像:
R(x,y)=1 r(x,y)≥t0 r(x,y)t (4)
2.2 計(jì)算步驟
(1)輸入原始圖像A,通過(guò)對(duì)原始圖像A在微動(dòng)方向上平移,生成綜合微動(dòng)圖像F。F=[Ah,Av,Ad],其中h、v、d分別代表水平、垂直和傾斜方向。本文分別將圖像A向8個(gè)方向平移,移動(dòng)距離為一個(gè)像素單位。
(2)計(jì)算各微動(dòng)方向的邊緣圖像H:
Ci=Fi-A, i=h,v,d (5)
?。?)計(jì)算競(jìng)爭(zhēng)灰度邊緣圖像H:
H=max(Ci), i=h,v,d (6)
(4)將競(jìng)爭(zhēng)灰度邊緣圖像H重新量化到[0,255]。
?。?)為了減少偽邊緣的產(chǎn)生,對(duì)競(jìng)爭(zhēng)邊緣圖像H進(jìn)行均值濾波處理:
G=mean(H) (7)
(6)對(duì)量化濾波后的灰度邊緣圖像,采用非極大值抑制和雙閾值檢測(cè)邊緣連接處理,得到二值邊緣圖像。
2.3 非極大值抑制
直接對(duì)經(jīng)過(guò)量化濾波的競(jìng)爭(zhēng)灰度邊緣圖像進(jìn)行二值化操作并不能準(zhǔn)確地提取出圖像的邊緣,因此需要對(duì)經(jīng)過(guò)量化濾波的競(jìng)爭(zhēng)灰度邊緣圖像的幅值進(jìn)行非極大值抑制來(lái)進(jìn)一步確定邊緣點(diǎn)。若圖像G(x,y)上(i,j)像素點(diǎn)的邊緣強(qiáng)度G(i,j)小于沿平移線(xiàn)方向上的兩個(gè)相鄰像素點(diǎn)的邊緣強(qiáng)度,則認(rèn)為該像素點(diǎn)為非邊緣點(diǎn),將其灰度值設(shè)為0。即保留幅值局部變化最大的點(diǎn),細(xì)化幅值圖像中的屋脊帶。
2.4 雙閾值檢測(cè)及邊緣連接
由于圖像中噪聲和邊緣都屬于高頻部分,經(jīng)過(guò)非極大值抑制處理過(guò)的邊緣圖像仍然有很大一部分是屬于噪聲的偽邊緣點(diǎn),因此必須進(jìn)行去噪處理[7]。本文采用高低雙閾值的方法實(shí)現(xiàn)此去噪過(guò)程。設(shè)定高、低兩個(gè)閾值,高閾值處理后的邊緣圖像能去除大部分噪聲,得到尺寸較大的清晰邊緣,但同時(shí)也損失了一些有用的細(xì)節(jié)邊緣信息;低閾值去噪處理后圖像保留了較多的信息,能保留細(xì)微邊緣,但是產(chǎn)生了較多的偽邊緣。經(jīng)過(guò)雙閾值化處理之后能夠得到兩幅不同特征二值邊緣圖像。以高閾值邊緣圖像為基礎(chǔ),以低閾值邊緣圖像為補(bǔ)充進(jìn)行邊緣連接,實(shí)現(xiàn)最終的圖像邊緣提取。
評(píng)論