ARM內(nèi)核目標(biāo)系統(tǒng)中的代碼運(yùn)行時(shí)間測試方法
在ARM系統(tǒng)中,有時(shí)需要精確的時(shí)間測量。通常,取時(shí)間的C函數(shù)(如gettime()等)不僅通用性差(必須包含頭文件DOS.H,且不支持Unix、Linux和標(biāo)準(zhǔn)C),明顯不適用于ARM系統(tǒng)[1];更成問題的是,其最短時(shí)間只能到10-2 秒級,不能提供更短的時(shí)間分度。根本原因在于: 這類函數(shù)是基于系統(tǒng)實(shí)時(shí)時(shí)鐘(RTC)的,而RTC通常采用標(biāo)準(zhǔn)化鐘表晶振,頻率只有32.768 kHz而已[2]。
然而很多應(yīng)用涉及μs級的時(shí)間計(jì)量,這是標(biāo)準(zhǔn)化了的RTC以及基于它的時(shí)間函數(shù)所無能為力的。筆者在移植DES算法到ARM系統(tǒng)的實(shí)驗(yàn)過程中,便遇到過要定量評估加密算法耗時(shí)多少的問題,發(fā)現(xiàn)的確不能用上述常規(guī)的C函數(shù)解決。經(jīng)對ARM芯片結(jié)構(gòu)的考察,發(fā)現(xiàn)其內(nèi)置的WatchDog系統(tǒng)是以系統(tǒng)時(shí)鐘驅(qū)動(dòng)的,定量性能應(yīng)該很好,區(qū)分時(shí)間間隔的精細(xì)程度也應(yīng)該足夠。于是根據(jù)所用ARM芯片的原廠家數(shù)據(jù)手冊中的說明,借用 WatchDog編寫了自己的計(jì)時(shí)函數(shù),使用起來也比較方便??紤]到ARM芯片都帶有內(nèi)置看門狗,筆者覺得這種方法可算是一個(gè)不錯(cuò)的“過渡性”解決方案,故在此加以介紹,供同行們參考并指正。
1 測量原理
ARM芯片中的看門狗,其原始功能是監(jiān)視CPU核心運(yùn)行的某些超時(shí)。這些超時(shí)的發(fā)生,通常是因?yàn)楦蓴_和系統(tǒng)錯(cuò)誤等造成的程序運(yùn)行混亂。一旦發(fā)生這類情形,看門狗便請求中斷服務(wù)或發(fā)出復(fù)位脈沖重啟系統(tǒng)。為了達(dá)到這樣的目的,其計(jì)時(shí)原理必須獨(dú)立于系統(tǒng)中的任何進(jìn)程。實(shí)際上,WatchDog是獨(dú)立的硬件邏輯,其計(jì)時(shí)脈沖直接取自系統(tǒng)主時(shí)鐘,因此它與RTC一樣具備實(shí)時(shí)性和獨(dú)立性,借用看門狗的計(jì)時(shí)體系來實(shí)現(xiàn)高精度時(shí)間測量是合理的。
先以實(shí)驗(yàn)中用到的S3C44B0X為例(該實(shí)驗(yàn)所用的ARM開發(fā)板型號為NETARM300),具體談?wù)効撮T狗的工作原理。其原理框圖如圖1所示,圖中MCLK即系統(tǒng)主時(shí)鐘[3]。
圖1 S3C44B0X內(nèi)嵌看門狗硬件原理框圖
從圖中可以看出,系統(tǒng)主時(shí)鐘MCLK經(jīng)過可編程預(yù)分頻、可選固定分頻后,進(jìn)入WTCNT(硬件系統(tǒng)的計(jì)時(shí)計(jì)數(shù)器,16位)計(jì)數(shù)。根據(jù)器件手冊,計(jì)數(shù)時(shí)間間隔t_watchdog=1/(MCLK/(Prescaler value+1)/Division_factor )。式中,參數(shù)Prescaler value的取值為0~28-1;Division_factor有16、32、64、128四種取值。如果復(fù)位信號輸出允許(即WTCON的位0置1),那么一旦計(jì)數(shù)器WTCNT的計(jì)數(shù)超過WTDAT允許的范圍,看門狗就會將CPU復(fù)位。本實(shí)驗(yàn)過程中屏蔽掉了這種復(fù)位和中斷請求功能,僅讓它對脈沖計(jì)數(shù)。
控制寄存器WTCON的有關(guān)各位定義圖中已給出(如需詳細(xì)解釋可查閱器件手冊,如參考文獻(xiàn)[3]),其他全為保留位,可全置為0。
至于MCLK具體值的計(jì)算,可以查驗(yàn)系統(tǒng)中的晶振參數(shù)(頻率),讀取系統(tǒng)時(shí)鐘的PLL寄存器(如S3C44B0X的PLLCON)后算得。計(jì)算的方法都已在具體ARM芯片手冊中給出[4]。
2 測量算法實(shí)現(xiàn)和實(shí)驗(yàn)結(jié)果
按照所需參數(shù)設(shè)置的看門狗定時(shí)器控制寄存器WTCON的值(如前所述),在待測代碼段執(zhí)行之前開啟看門狗定時(shí)器;等其執(zhí)行完畢則關(guān)閉看門狗定時(shí)器,讀取WTCNT的值即可算得運(yùn)行時(shí)間。作為一個(gè)具體示例,筆者實(shí)驗(yàn)中所實(shí)現(xiàn)的算法如下:
(1) 計(jì)時(shí)算法
void my_CountStart() {
rWTCON=((MCLK/1000000-1)8)|(23); //1 MHz/64,Watchdog,nRESET,中斷禁止
rWTDAT=0xffff;
rWTCNT=0xffff;
rWTCON=((MCLK/1000000-1)8)|(23)|(15); //計(jì)時(shí)開始
}
int my_CountStop() {
int i=0;
rWTCON=((MCLK/1000000-1)8)|(23); //計(jì)時(shí)結(jié)束
i=0xffff-rWTCNT;//每16 μs計(jì)數(shù)一次
return i*16;
}
(2) 應(yīng)用
int Main() {
my_CountStart();
Des_Go(buf, buf, sizeof(str), key, sizeof(key), ENCRYPT, Is3DES);
encrypt_time=my_CountStop();
}
需要指出: 在改變WTCON的值之前應(yīng)將原有值保存,待測量完成后再復(fù)原WTCON。之所以強(qiáng)調(diào)這一點(diǎn),是因?yàn)橄到y(tǒng)別處很可能在使用看門狗功能。
實(shí)驗(yàn)當(dāng)中,對長度為189字節(jié)的字符串采用3次DES加密。密鑰長度為15位,測得的加密時(shí)間為28 832 μs,解密時(shí)間為28 896 μs??s短字符串長度,測得的加密時(shí)間基本呈線性變化: 字符串長度為107字節(jié)而其他地方不變時(shí),加密耗時(shí)16 928 μs,解密耗時(shí)16 948 μs;字符串長度為41字節(jié)而其他地方不變時(shí),加密耗時(shí)7 424 μs,解密耗時(shí)7 424 μs。對于相同長度的字符串,密鑰長度的改變對加密/解密時(shí)間的影響不是很大。
值得一提的是,剛開始實(shí)驗(yàn)時(shí),被加密字符串分別取為190字節(jié)和75字節(jié),測得耗時(shí)分別是34 032 μs和16 928 μs,顯然與倍增的關(guān)系相差很遠(yuǎn)。分析程序后發(fā)現(xiàn),原來問題出在加密算法中間的打印語句“Uart_Printf("ncounting begin...!!!")”上。原來以為它耗時(shí)很少,故沒有將它從加密算法中移走;移走后再試,耗時(shí)大減,分別為29 600 μs和12 496 μs,與字符數(shù)倍增、時(shí)間倍增的預(yù)期基本相符。上面的實(shí)驗(yàn),還使筆者得知該打印語句占用了4 432 μs。稍微修改條件,繼續(xù)實(shí)驗(yàn): 當(dāng)上述打印語句的字節(jié)數(shù)擴(kuò)充為原來的4倍時(shí),測得該語句耗時(shí)17 728 μs。可見,耗時(shí)與打印內(nèi)容的字節(jié)數(shù)基本上成正比;另外,這種打印語句與加密/解密算法本身相比,并不是想當(dāng)然地只占用一點(diǎn)點(diǎn)時(shí)間。(上述數(shù)據(jù)與PC機(jī)串口通信波特率的設(shè)置無明顯關(guān)系。實(shí)際測試結(jié)果為: 波特率由115 200 bps下降到57 600 bps,沒有可以察覺到的差別。)
3 測量方法討論
ARM內(nèi)置看門狗用作時(shí)間度量的適用范圍,大體以μs數(shù)量級為界。比如,從S3C44B0X的器件特性說明中可知,MCLK在看門狗計(jì)時(shí)器里的分頻比至少是1/16。典型情況下,MCLK=60 MHz,則看門狗能夠分辨的最短時(shí)間單元t=1/(60 MHz/16)=0.27 μs。統(tǒng)計(jì)誤差約為t/2,即0.1μs數(shù)量級。就μs級的時(shí)間測量精度而言,相對誤差有可能達(dá)到1%~10%;不過,這對很多速度估算的場合來說還是可以接受的。如果被測時(shí)間在10 μs以上,那就沒有任何問題,可以認(rèn)為是相當(dāng)精確的了。
這種思路還可用來實(shí)現(xiàn)精確延時(shí),因?yàn)樗亩〞r(shí)不依賴于指令執(zhí)行時(shí)間(指令執(zhí)行要受到系統(tǒng)調(diào)度等的影響,因而有很多不確定因素),而取決于對主時(shí)鐘的硬件分頻計(jì)數(shù)。
由此實(shí)驗(yàn)推廣,ARM內(nèi)置看門狗可以作為此類系統(tǒng)中的第二時(shí)鐘存在。對于那些時(shí)間要求精確到μs、RTC的精度無法滿足的應(yīng)用,這種處理都不失為一種準(zhǔn)確、高效的方法。
評論