常用汽車電子系統(tǒng)應用LED驅(qū)動解決案例分析
使用LM3424驅(qū)動LED和執(zhí)行熱電流控制具有多項優(yōu)點。首先,不需要在外部配備大部分復雜的部件(例如多個運算放大器),因為這些在集成電路中已集成。在最簡單的配置中,實現(xiàn)熱返送只需要少量標準電阻器和負溫度系數(shù)(NTC)熱敏電阻。如果需要更高的精度,設計師可以使用LM94022等精確溫度傳感器替換RBIAS和RNTC。此外,LM3424使用戶可以設置LED電流開始熱返送的溫度(TBK,通過RREF1,2、RBIAS和RNTC設置)和電流返送的斜率(通過RGAIN設置)。這使設計師可以使用少量外部部件精確重現(xiàn)制造商數(shù)據(jù)表中提供的電流額定值下降曲線,同時提高隨溫度變化表現(xiàn)出的性能,如圖3所示。
圖3 隨溫度變化的額定值下降曲線示例
如圖2使用LM3424所示,集成電路將在到達某溫度時返送LED電流,此時,LED電流為零。這與LED作為系統(tǒng)中主要熱發(fā)生器的情況不同。對于大燈組件等應用,設計師可能想要設置一項安全功能,即使LED可能在超出安全工作區(qū)的條件下工作,也始終能夠提供光輸出。對于此類情況,LED電流與溫度曲線將如圖4中示例所示。雖然LM3424沒有這項內(nèi)置功能,但這可以使用外部箝位電路輕松實現(xiàn),并且防止TSENSE針腳上的電壓低于預規(guī)定值。
圖4 隨溫度變化的額定值下降曲線示例(最低值非零)
使用SEPIC穩(wěn)壓器的大燈示例
雖然汽車電氣系統(tǒng)通常在12V~14VDC條件下工作,但在特殊情況下,向系統(tǒng)部件的供電電壓可能超出或低于正常工作值范圍。例如,在冷啟動情況下,系統(tǒng)供電可能為4。5V或更低,在負載突降狀況下,電壓可能在40V到60V之間。如果在這些特殊情況下仍需要LED工作或保護,設計師可能希望選擇可提供恒定LED電流的功率級,而不管電源電壓與LED組電壓的關系如何。一種采用SEPIC的開關穩(wěn)壓器可以執(zhí)行升壓和降壓操作,如圖5所示。
圖5 SEPIC轉(zhuǎn)換器基本拓撲結構
SEPIC轉(zhuǎn)換器的效率可能不如降壓或升壓轉(zhuǎn)換器,但拓撲結構具有多項優(yōu)點。除了具有升壓和降壓功能外,另一項尤其適用于汽車電子系統(tǒng)應用的優(yōu)點是CSEPIC電容器提供了輸入和輸出之間的隔離。SEPIC轉(zhuǎn)換器的不足是需要兩個電感器,但兩個電感器可以輕松地纏繞在同個芯上,而不是作為兩個分立的部件。圖6顯示同樣使用LM3421控制器的應用電路示例。
圖6 SEPIC配置中的LM3421
使用串聯(lián)/并聯(lián)LED的組合尾燈
另一個常見的照明應用是尾燈/閃光燈組件,也被稱為組合尾燈(RCL)。對于在12V~14V直流電源供電中具有3V典型正向電壓(VF)的LED來說,一個可能的解決方案是使用降壓開關穩(wěn)壓器。由于最低值為12V,因此只允許3個LED串聯(lián)??梢圆捎脠D7所示的串聯(lián)/并聯(lián)組合,因為在一個串聯(lián)燈組中所有必備的LED的總電壓將超過12V。
圖7 串聯(lián)/并聯(lián)陣列
對于此應用的調(diào)光和閃光部分,可以使用多種方法降低向LED陣列提供的功率。最常用的一種方法是脈寬調(diào)制(PWM)調(diào)光,這種方法通常使用專門的邏輯信號高速開啟和關閉LED以控制總體光輸出。這種方法簡單有效,但可能極少用于汽車電子系統(tǒng)應用,因為在線束中需要一根額外的線路用于調(diào)光信號。另一種方法稱為雙線調(diào)光,向LED驅(qū)動器提供的電源定期中斷以控制調(diào)光。1。5A整體式開關穩(wěn)壓器LM3406具有此功能,其真實電流平均值實現(xiàn)更嚴密的光輸出控制。集成的N通道MOSFET不提供控制器集成電路具有的靈活性,因此降低了板上的復雜性。圖8顯示了使用雙線調(diào)光方法的LM3406應用示例。
圖8 雙線調(diào)光的LM3406配置
LM3406包含輸入電壓感應針腳(VINS)使照明設計師可以魚和熊掌兼得,因為他們可以實現(xiàn)標準PWM調(diào)光的優(yōu)點,同時降低系統(tǒng)接線復雜性(照明部件距離控制電路較遠)。阻擋二極管D2允許輸入電容器CIN保持與LM3406的連接,這與非雙線調(diào)光設置相同,因此使LM3406在調(diào)光階段可以保持完全供電。這比簡單的開啟和關閉零部件來實現(xiàn)調(diào)光更為高效,因為LM3406的所有內(nèi)部支持電路在調(diào)光過程中保持通電。因此,部件可以立即進入調(diào)光階段,集成電路沒有恢復和運行延時。這樣,在雙線調(diào)光設置中,LM3406的工作方式與輸出控制中使用邏輯調(diào)光針腳的方式相同。標準PWM設置需要的附加部件只有阻擋二極管D2、VINS下拉電阻器RPD和用于實現(xiàn)理想斬波開關S1的部件。
使用串聯(lián)LED和升壓/降壓穩(wěn)壓器組合的RCL示例
在并聯(lián)燈組陣列中,配置LED通過允許LED功率級在12V~14V軌道下直接運行,極大地簡化系統(tǒng)設計,但并聯(lián)/串聯(lián)組合也同樣具有一些缺點。在查看LED制造商數(shù)據(jù)表時,可以注意到兩個重要的事實:LED的光輸出與流經(jīng)的電流成正比,LED的動態(tài)電阻隨著VF而變化。制造商按VF、光通量和顏色(或色溫)對LED分級。例如,典型的VF級別可能包含范圍從3。27V到3。51V(25℃時)的LED,所有級別的整個范圍可以從2。8V到4。2V。由于LED制造商通常向客戶銷售多個級別的LED,關注成本的設計師依賴所有LED都具有緊密VF分布是不實際的。
下例顯示了VF變化的影響。在實驗中,使用圖9所示兩種設置收集數(shù)據(jù)。一種設置用于4個LED(每個LED都具有專門的電流源),另一種設置用于并聯(lián)的4個LED(共享一個電流源)。表1所示數(shù)據(jù)在25℃加電后5秒內(nèi)測得,以最大限度降低LED自發(fā)熱的影響。
圖9 實驗性設置
表1 多電流源設置(左)和單電流源設置(右)的數(shù)據(jù)
從這些數(shù)據(jù)可以明顯看出LEDVF變化在并聯(lián)運行時將導致不均勻電流分布。即使對于分級的LED,也可以看到類似的影響,并聯(lián)陣列中各串聯(lián)燈組的電流分布不均。改進并聯(lián)燈組間電流分布的一種方式是向各燈組增加鎮(zhèn)流電阻器。這有助于使電流分布均勻化,但存在的主要問題是由于鎮(zhèn)流電阻器的功耗而降低了效率。
根據(jù)具體的設計,上述問題的影響可能可以忽略。但是,如果系統(tǒng)設計師對上述影響存有顧慮,可以采用單個串聯(lián)燈組作為首選拓撲結構。在這種解決方法中,仍可以使用LM3406等部件,但將增大系統(tǒng)復雜性,因為需要新前端部件用于傳輸超出12V~14V的電源電壓為LED驅(qū)動器供電。然后,LED驅(qū)動器降低此新電壓,為單個LED燈組供電。這可以通過在直流電源和LM3406之間增加升壓DC/DC功率級輕松實現(xiàn),如圖10所示。通過此拓撲結構,串聯(lián)燈組中的所有LED均具有相同的電流,無論各LED的VF值是多少。
圖10 升壓和降壓組合
還需要注意的一個問題是為什么應包含降壓功率級,而不是直接使用升壓穩(wěn)壓器運行LED。這兩種拓撲結構之間的重要區(qū)別是輸出電容器:升壓穩(wěn)壓器需要輸出電容器,而降壓穩(wěn)壓器可以使用或不使用輸出電容器操作。如果設置中使用輸出電容器,即使在穩(wěn)壓器已進入調(diào)光模式并停止向LED供電后,仍可以為LED輸送電流一段時間。因此,在LED輸出實際停止前,還需要額外的時間使輸
評論