色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

          FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

          作者: 時(shí)間:2010-05-19 來(lái)源:網(wǎng)絡(luò) 收藏

            2.1 完全DDS內(nèi)核

            完全DDS內(nèi)核的組成框圖如圖2所示。完全DDS核包括頻率累加器、相位累加器、相位偏移累加器、波形存儲(chǔ)器、相位選擇開(kāi)關(guān)等部分。頻率累加器在產(chǎn)生線(xiàn)性調(diào)頻信號(hào)時(shí)控制頻率增量的大??;相位累加器和普通的DDS中的相位累加器功能相同,其輸入為頻率控制字,決定輸出信號(hào)的頻率;相位偏移累加器用于產(chǎn)生相位編碼信號(hào),其相位偏移字根據(jù)需要可以有多種,但必須有一種相位偏移為0°;正弦表用于存儲(chǔ)數(shù)字正弦波,為了減小波形存儲(chǔ)容量,正弦表中只存儲(chǔ)了1/4個(gè)周期的正弦波信號(hào),通過(guò)邏輯控制實(shí)現(xiàn)全周期正弦波信號(hào)的產(chǎn)生。

          FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

            完全DDS內(nèi)核的工作原理與普通DDS芯片的工作原理大致相同,只不過(guò)在產(chǎn)生不同調(diào)制樣式信號(hào)時(shí)取舍不同。由于相位/ 幅度轉(zhuǎn)換表中存放的是正弦信號(hào),因此模塊只輸出受到不同調(diào)制的正弦信號(hào)。如果將相位/ 幅度轉(zhuǎn)換表做成內(nèi)容可修改的雙端口RAM結(jié)構(gòu),則該模塊也能產(chǎn)生特殊樣式的周期信號(hào)?;谕耆獶DS核的信號(hào)產(chǎn)生方法其優(yōu)點(diǎn)是預(yù)存波形的點(diǎn)數(shù)不變,輸出信號(hào)的頻率僅由頻率控制字和系統(tǒng)時(shí)鐘決定,三者之間的關(guān)系如上節(jié)DDS基本原理描述的關(guān)系。

            如前所述,DDS輸出信號(hào)存在雜散頻譜。引起雜散頻譜的原因主要有相位截?cái)嘈?yīng)、波形幅度量化誤差和DAC的非理想特性。由于本系統(tǒng)采用單獨(dú)的DAC芯片,這里只討論前兩種因素對(duì)信號(hào)質(zhì)量的影響。

            為了得到高的頻率分辨率,相位累加器位數(shù)一般較大,而在DDS設(shè)計(jì)中,為了節(jié)省波形存儲(chǔ)器的容量,人們希望在不引入過(guò)多干擾的情況下盡可能多地截去相位累加器的低有效位B。故相位累加器的N位輸出中只有高A位去尋址只讀存儲(chǔ)器,從而產(chǎn)生了相位截?cái)嗾`差。根據(jù)相關(guān)分析,相位截?cái)鄬⒁鹬芷谛苑侵C波雜散,其譜曲線(xiàn)“成對(duì)”出現(xiàn),“成對(duì)”譜線(xiàn)出現(xiàn)的間隔為fc/2B。通常采用Wheatley相位抖動(dòng)注入法消除這種雜散,在每次相位累加器溢出之時(shí),高頻脈沖產(chǎn)生一個(gè)0~(K-1)的隨機(jī)數(shù)Kn,加到相位累加器的寄存器值上,使相位累加器的溢出不總是比理想的溢出推后,而是隨機(jī)地提前,從而打破了周期性。這種方法對(duì)去除雜散非常有效,但所付出的代價(jià)是產(chǎn)生了寬頻帶相位噪聲,但這種寬頻帶相位噪聲比雜散更容易濾除。

            由于ROM存儲(chǔ)的波形樣點(diǎn)的幅度編碼由有限位二進(jìn)制數(shù)表示,這樣DDS的輸出波形就存在幅度量化誤差,僅從量化觀(guān)點(diǎn)看,設(shè)正弦波的樣點(diǎn)值用D位二進(jìn)制碼來(lái)表示,則信號(hào)功率與量化噪聲總功率之比為6D dB??梢?jiàn),幅度量化的信噪比隨著D的增加而提高。為了在低比特DAC情況下能夠采用隨機(jī)化幅度抖動(dòng)注入法獲得更高的信號(hào)質(zhì)量,在DAC的輸入數(shù)據(jù)被截?cái)喑蒑 bit之前,給正弦查詢(xún)表輸出的D bit數(shù)據(jù)加上一個(gè)隨機(jī)數(shù),這個(gè)隨機(jī)數(shù)的范圍是0~(2D-M-1),如圖3所示。

          FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

            通過(guò)對(duì)一個(gè)有5 bit DAC的隨機(jī)化幅度抖動(dòng)注入DDS的頻譜和兩個(gè)分別有5 bit和11 bit DAC的普通正弦輸出DDS的頻譜的比較,隨機(jī)化幅度抖動(dòng)注入DDS雜散的電平比起帶有相同分辨力DAC的普通DDS雜散的電平至少低10 dB,而與有11 bit DAC的普通正弦輸出DDS的雜散的電平差不多。尤其值得注意的是,一直出現(xiàn)在正弦輸出DDS載波附近的雜散譜線(xiàn)在隨機(jī)化幅度抖動(dòng)注入DDS輸出頻譜中被消除掉了[5]。



          評(píng)論


          相關(guān)推薦

          技術(shù)專(zhuān)區(qū)

          關(guān)閉