高性能汽車(chē)電源設(shè)計(jì)
通用電源的拓?fù)浼軜?gòu)
這里列出了四種常用的電源架構(gòu),總結(jié)了最近三年汽車(chē)領(lǐng)域的典型設(shè)計(jì)架構(gòu)。當(dāng)然,用戶可以通過(guò)不同方式實(shí)現(xiàn)具體的設(shè)計(jì)要求,多數(shù)方案可歸納為這四種結(jié)構(gòu)中的一種。
方案 1
該架構(gòu)為優(yōu)化DC-DC轉(zhuǎn)換器的效率、布局、PCB散熱及噪聲指標(biāo)提供了一種靈活設(shè)計(jì)。方案1的主要優(yōu)勢(shì)是:
·增加核設(shè)計(jì)的靈活性。即使不是最低成本/最高效率的解決方案,增加一個(gè)獨(dú)立的轉(zhuǎn)換器有助于重復(fù)利用原有設(shè)計(jì)。
·有助于合理利用開(kāi)關(guān)電源和線性穩(wěn)壓器。例如,相對(duì)于直接從汽車(chē)電池降壓到1.8V,從3.3V電壓產(chǎn)生1.8V300mA的電源效率更高、成本也更低。
·分散PCB的熱量,這為選擇轉(zhuǎn)換器的位置及散熱提供了靈活性。
·允許使用高性能、高性價(jià)比的低電壓模擬IC,與高壓IC相比,這種方案提供了更寬的選擇范圍。
方案1的缺點(diǎn)是:較大的電路板面積、成本相對(duì)較高、對(duì)于有多路電源需求的設(shè)計(jì)來(lái)說(shuō)過(guò)于復(fù)雜。
方案 2
該方案是高集成度與設(shè)計(jì)靈活性的折衷,與方案1相比,在成本、外形尺寸和復(fù)雜度方面具有一定的優(yōu)勢(shì)。特別適合2路降壓輸出并需要獨(dú)立控制的方案。例如,要求3.3V電源不間斷供電,而在需要時(shí)可以關(guān)閉5V電源,以節(jié)省IQ電流。另一種應(yīng)用是產(chǎn)生5V和8V電源,利用這種方案可以省去一個(gè)從5V電壓升壓的boost轉(zhuǎn)換器。
采用外置MOSFET的兩路輸出控制器可以提供與方案相同的PCB布板靈活性,便于散熱。內(nèi)置MOSFET的轉(zhuǎn)換器,設(shè)計(jì)人員應(yīng)注意不要在PCB的同一位置耗散過(guò)多的熱量。
方案 3
這一架構(gòu)把多路高壓轉(zhuǎn)換問(wèn)題轉(zhuǎn)化成一路高壓轉(zhuǎn)換和一個(gè)高度集成的低壓轉(zhuǎn)換IC,相對(duì)于多輸出高壓轉(zhuǎn)換IC,高集成度低壓轉(zhuǎn)換IC成本較低,且容易從市場(chǎng)上得到。如果方案3中的低壓PMIC有兩路以上輸出,那么方案3將存在與方案4相同的缺陷。
方案3的主要劣勢(shì)是多路電壓集中在同一芯片,布板時(shí)需要慎重考慮PCB散熱問(wèn)題。
方案 4
最新推出的高集成度PMIC可以在單芯片上集成所有必要的電源轉(zhuǎn)換和管理功能,突破了電源設(shè)計(jì)中的諸多限制。但是,高集成度也存在一定的負(fù)面影響。
·在高集成度PMIC中,集成度與驅(qū)動(dòng)能力總是相互矛盾。例如,在產(chǎn)品升級(jí)時(shí),原設(shè)計(jì)中內(nèi)置MOSFET的穩(wěn)壓器可能無(wú)法滿足新設(shè)計(jì)中的負(fù)載驅(qū)動(dòng)要求。
·把低壓轉(zhuǎn)換器級(jí)聯(lián)到高壓轉(zhuǎn)換器有助于降低成本,但這種方式受限于穩(wěn)壓器的開(kāi)/關(guān)控制。例如,如果5V電源關(guān)閉時(shí)必須開(kāi)啟3.3V電源,就無(wú)法將3.3V輸入連接到5V電源輸出;否則將不能關(guān)閉5V電源,造成較高的靜態(tài)電流IQ。
Maxim的汽車(chē)電源解決方案
Maxim的汽車(chē)電源IC克服了許多電源管理問(wèn)題,能夠提供獨(dú)特的高性能解決方案。電源產(chǎn)品包括過(guò)壓保護(hù)、微處理器監(jiān)控、開(kāi)關(guān)轉(zhuǎn)換器和線性穩(wěn)壓器等高度集成的多功能PMIC (如圖4所示)。電源IC符合汽車(chē)級(jí)質(zhì)量認(rèn)證和生產(chǎn)要求,例如:AECQ100認(rèn)證、DFMEA、不同的溫度等級(jí)(包括85℃、105℃、125℃、135℃)、特殊的封裝要求。(end)
電子血壓計(jì)相關(guān)文章:電子血壓計(jì)原理
評(píng)論