電廠應(yīng)用ZigBee技術(shù)的必要性和可行性研究
1 引 言
隨著科技的發(fā)展,電廠運(yùn)行維護(hù)對設(shè)備狀態(tài)監(jiān)測系統(tǒng)提出更高要求。目前的監(jiān)測系統(tǒng)的檢測信息量和測試點(diǎn)安裝問題已經(jīng)出現(xiàn)不能滿足電廠安全、可靠、經(jīng)濟(jì)的運(yùn)行要求的勢頭。當(dāng)前,電廠狀態(tài)監(jiān)測系統(tǒng)基本上是在有線的基礎(chǔ)實施監(jiān)測的功能。有線方式受布線、供電電源、安裝場所和維修等的限制,如旋轉(zhuǎn)機(jī)械的轉(zhuǎn)動部分的狀態(tài)監(jiān)測、高電壓和大電流設(shè)備的狀態(tài)(溫度、絕緣)監(jiān)測等采用有線方式是無法完成的,更不可能保證數(shù)據(jù)的實時性、可靠性和完整性,也將限制對設(shè)備運(yùn)行狀態(tài)的評估、判斷和決策。
現(xiàn)代監(jiān)測系統(tǒng)由傳感器網(wǎng)絡(luò)組成,傳感器網(wǎng)絡(luò)是有線傳感器網(wǎng)絡(luò)和無線傳感器網(wǎng)絡(luò)的集合。無線傳感器網(wǎng)絡(luò)是基于IEEE 802.15.4技術(shù)標(biāo)準(zhǔn)和ZigBee網(wǎng)絡(luò)協(xié)議而設(shè)計的無線數(shù)據(jù)傳輸網(wǎng)絡(luò),他是用大量的具有多功能多信息信號獲取能力的傳感器,采用自組織無線接入網(wǎng)絡(luò),與傳感器網(wǎng)絡(luò)控制器連接,構(gòu)成無線傳感器網(wǎng)絡(luò)。ZigBee技術(shù)是專門針對無線傳感器網(wǎng)絡(luò)而開發(fā)的,利用ZigBee技術(shù)組成無線傳感器網(wǎng)絡(luò)是電廠監(jiān)測系統(tǒng)發(fā)展的必然趨勢。
2 ZigBee技術(shù)
(1)概論
ZigBee技術(shù)是一種新興的近距離、低復(fù)雜度、低功耗、低數(shù)據(jù)速率、低成本,工作在2.4 GHz和868/915 MHz的無線網(wǎng)絡(luò)技術(shù),他是一種介于無線標(biāo)記技術(shù)和藍(lán)牙之間的技術(shù)方案,是一種雙向傳輸(two-way)的無線通信標(biāo)準(zhǔn),主要用于中短距離無線系統(tǒng)連接,提供傳感器或二次儀表無線雙功網(wǎng)絡(luò)接入,能夠滿足對各種傳感器的數(shù)據(jù)輸出和輸入控制命令和信息的需求使現(xiàn)有系統(tǒng)網(wǎng)絡(luò)化、無線化。ZigBee技術(shù)采用一般IEEE 802.15.4收發(fā)器技術(shù)與嵌入ZigBee技術(shù)協(xié)議棧的組合;他依據(jù)IEEE 802.15.4標(biāo)準(zhǔn),在數(shù)千個微小的傳感器之間相互協(xié)調(diào)實現(xiàn)通信。這些傳感器設(shè)計成只需要很少的能量的裝置,并以接力的方式將數(shù)據(jù)從一個傳感器無線傳到另一個傳感器,依次傳遞,以構(gòu)成一個無線傳感器網(wǎng)絡(luò)。ZigBee技術(shù)的主要特征如表1所示。
(2)ZigBee技術(shù)與其他無線通信技術(shù)的比較
無線通信技術(shù)的特性比較如表2所示。
3 ZigBee技術(shù)應(yīng)用于電廠的可行性論證
電廠設(shè)備監(jiān)測系統(tǒng)首先為電廠監(jiān)控系統(tǒng)提供現(xiàn)場設(shè)備的各種參數(shù)、數(shù)據(jù)、圖表、曲線、開關(guān)量和模擬量等信息,根據(jù)這些信息分析設(shè)備狀態(tài)、執(zhí)行開環(huán)、閉環(huán)控制與調(diào)節(jié),對設(shè)備故障和事故進(jìn)行報警和相應(yīng)處理,保證設(shè)備最優(yōu)運(yùn)行狀態(tài);為設(shè)備狀態(tài)檢修提供分析長期的運(yùn)行數(shù)據(jù),以便形成狀態(tài)檢修決策;為遙測、搖訊、遙控、搖調(diào)等提供遠(yuǎn)動數(shù)據(jù)等。
ZigBee技術(shù)組成傳感器網(wǎng)絡(luò)系統(tǒng)本身具有以下特點(diǎn):實時性:實時在線監(jiān)測;低功耗:采用鈕扣電池可運(yùn)行2年以上;先進(jìn)性:技術(shù)、器件、軟件先進(jìn),為系統(tǒng)的可靠性、先進(jìn)性奠定了基礎(chǔ);準(zhǔn)確性:溫度測量精度可達(dá)±0.1℃;靈活性:用戶可根據(jù)自己的需求,靈活、方便地設(shè)置參數(shù);系統(tǒng)性:可與電力系統(tǒng)綜合自動化系統(tǒng)、消防系統(tǒng)等融為功能更加強(qiáng)大的綜合系統(tǒng),可與局域網(wǎng)、廣域網(wǎng)、系統(tǒng)方便連接,實現(xiàn)數(shù)據(jù)共享,便捷管理;真實性:實時數(shù)據(jù)記錄、分析,為運(yùn)行、管理、檢修、調(diào)度等部門提供真實數(shù)據(jù);安全性:ZigBee技術(shù)系統(tǒng)不論是產(chǎn)品、還是工程及其維護(hù),都具有安全性。ZigBee技術(shù)提供數(shù)據(jù)完整性檢查和鑒權(quán)功能,采用AES-128加密算法,使數(shù)據(jù)安全得到保障;效益性:電力系統(tǒng)故障多以溫度升高而引起,有了這一套系統(tǒng),可以節(jié)約購置其他測溫儀器等設(shè)備支出(如紅外成像儀、點(diǎn)式測穩(wěn)儀等);可以節(jié)省巡檢人員,提高數(shù)據(jù)獲取的工作效率;達(dá)到有的放矢地開展設(shè)備維修的目的,將減少設(shè)備維護(hù)工作量;減少事故,提高供電可靠性;實踐性:ZigBee技術(shù)已經(jīng)成功應(yīng)用于汽車電器中的測量高速轉(zhuǎn)動的輪胎氣壓和溫度,ZigBee技術(shù)無線測溫系統(tǒng)用于大港油剛的110 kV的變電站。
3.1 ZigBee技術(shù)通信可靠性保證
ZigBee技術(shù)通信可靠性保證:通信可靠機(jī)制;網(wǎng)絡(luò)的自組織、自愈能力強(qiáng);在低信噪比的環(huán)境下ZigBee技術(shù)具有很強(qiáng)的抗干擾性能;在低信噪比的環(huán)境下ZigBee技術(shù)的性能超群(藍(lán)牙、FSK和WiFi B)。
3.2 ZigBee技術(shù)安全性論證:
3.2.1 ZigBee技術(shù)射頻信號對電氣一次設(shè)備的影響
ZigBee技術(shù)射頻信號,即高頻諧波影響電氣設(shè)備安全運(yùn)行和電能質(zhì)量的性質(zhì),因此,高頻諧波必須在允許的范圍內(nèi)。現(xiàn)行數(shù)字蜂窩移動通信網(wǎng)的頻率范圍:9~3.53 GHz,而ZigBee技術(shù)的頻段868/915 MHz和2.4 GHz,即ZigBee技術(shù)射頻信號在移動通信網(wǎng)的頻率范圍內(nèi),也就是說,無淪是否有ZigBee技術(shù)設(shè)備在場,其ZigBee技術(shù)的射頻已經(jīng)侵入電廠設(shè)備,而產(chǎn)生諧波。因此有必要測試電廠運(yùn)行設(shè)備的諧波分量,即設(shè)備的高頻諧波電流、電壓分量,根據(jù)測試結(jié)果進(jìn)行評估,只需設(shè)計測試數(shù)字蜂窩移動通信網(wǎng)的射頻信號對電氣設(shè)備的影響就可以。
理論上,電廠設(shè)備均處在現(xiàn)行數(shù)字蜂窩移動通信網(wǎng)包圍中,發(fā)電機(jī)的出口升壓變壓器高壓側(cè)分500 kV和220 kV兩個等級,測試主接線和測試點(diǎn)如圖1所示。
圖1中測點(diǎn):A為發(fā)電機(jī)機(jī)端電壓、電流;B為升壓變壓器高壓側(cè)電壓;C為輸電線電壓、電流。
發(fā)電機(jī)變壓器組的測試:測試儀器:DZF-Ⅱ電能質(zhì)量儀2臺、PP1電力仕1臺(美國產(chǎn));測試時間:2006年4月10日,4月21日;測試工況:發(fā)電機(jī)帶變壓器額定電壓空載(未并網(wǎng));發(fā)電機(jī)并網(wǎng)后多種負(fù)荷。
數(shù)據(jù)歸納原則:三相中取諧波含量最嚴(yán)重的一相為代表值;現(xiàn)場測試為2~50次諧波,為突出重點(diǎn)下列有些數(shù)據(jù)表中僅列出諧波含量較大的幾次。
機(jī)端諧波(測試點(diǎn)A)(見表3):
從測試數(shù)據(jù)(見表1)來看各測試工況諧波數(shù)據(jù)特性差不多,為全面、直觀起見,我們畫出額定負(fù)荷時的諧波含量(2~50次)柱狀圖(見圖2),圖2中:橫坐標(biāo)為諧波次數(shù),縱坐標(biāo)為諧波含有率(%)。
從上面數(shù)據(jù)表可以得出以下幾點(diǎn):況機(jī)端線電壓諧波總畸變率均5%,無超標(biāo)情況;電機(jī)并網(wǎng)帶負(fù)荷后,與空載相比,諧波電壓總畸變率有所減小,主要表現(xiàn)在高次諧波含量有所減?。回?fù)荷情況下機(jī)端諧波電壓總畸變率和各次諧波含有率變化不大并主要諧波成份為5次、3次;空載情況下機(jī)端主要諧波成份為5次、3次,14號機(jī)機(jī)端諧波電流見表4。
從表4數(shù)據(jù)可以得出:機(jī)端主要諧波電流為5次、3次,5次在90 A左右,3次在50 A左右,并5次、3次諧波電流隨負(fù)荷的增大變化不大。
升壓變壓器高壓側(cè)(500 kV)諧波(測試點(diǎn)B)(見表5)。
從測試數(shù)據(jù)來看各測試工況諧波數(shù)據(jù)特性差不多,為全面、直觀起見,這里畫出額定負(fù)荷時的諧波含量(2~50次)柱狀圖(見圖3)。圖3中:橫坐標(biāo)為諧波次數(shù),縱坐標(biāo)為諧波含有率(%)。
從表5數(shù)據(jù)中可以得出:各測試工況下升壓變壓器500 kV側(cè)諧波電壓總畸變率在2.3~2.5左右,主要諧波成份均為5次、3次。發(fā)電機(jī)并網(wǎng)前后該點(diǎn)諧波變化不大。
升壓變壓器高壓側(cè)(220 kV)諧波(測試點(diǎn)B)(見表6):
從上表數(shù)據(jù)中可以得出鼎各測試工況下升壓變壓器220 kV側(cè)諧波電壓總畸變率和各次諧波電壓含有率均未超標(biāo),主要諧波成份為3次,發(fā)電機(jī)并網(wǎng)前后諧波變化不大。
從以上測試結(jié)果(見表3~6)看,13次以上的諧波成分很少,且隨著次數(shù)的增加諧波含量趨向于零,表明:被移動通信信號包圍的發(fā)電機(jī)變壓器組,在各測試工況下
評論