無線充電器的設計(原理圖+主材bom)
無線電技術用于通信,已經(jīng)在全世界流行了近一百年。從當初的無線電廣播和無線電報,發(fā)展到現(xiàn)在的衛(wèi)星和微波通信,以及普及到全球幾乎每一個個人的移動通信、無線網(wǎng)絡、GPS等。無線通信極大地改變了人們的生產(chǎn)和生活方式,沒有無線通信,信息化社會的目標是不可議的。
然而,無線通信傳送的都是微弱的信息,而不是功率較大的/能量。因此許多使用極為方便的便攜式的移動產(chǎn)品,都要不定期地連接電網(wǎng)進行充電,也因此不得不留下各種插口和連接電纜。這就很難實現(xiàn)具有防水性能的密封工藝,而且這種個性化的線纜使得不同產(chǎn)品的充電器很難通用。如果徹底去掉這些尾巴,移動終端設備就可以獲得真正的自由。也易于實現(xiàn)密封和防水。這個目標必須要求能量也像信息一樣實現(xiàn)無線傳輸。
能量的傳送和信號的傳輸要求顯然不同,后者要求其內(nèi)容的完整和真實,不太要求效率,而前者要求的是功率和效率。雖然能量的無線傳送的想法早已有之,但因為一直無法突破效率這個瓶頸,使它一直不能進入實用領域。
目前,這個瓶頸仍然沒有實質性的突破。但是如果對傳輸距離沒有嚴格要求(不跟無線通信比),比如在數(shù)cm(本文稱微距)的范圍內(nèi),其傳輸效率就很容易提高到滿意的程度。如果能用比較簡單的設備實現(xiàn)微距條件下的無線傳能,并形成商業(yè)化的推廣應用,當今社會隨處可見的移動電子設備將有可能面臨一次新的變革。
工作原理
將直流電轉換成高頻交流電,然后通過沒有任何有有線連接的原、副線圈之間的互感耦合實現(xiàn)電能的無線饋送?;痉桨溉鐖D1所示。
本無線充電器由電能發(fā)送電路和電能接收與充電控制電路兩部分構成。
1 電能發(fā)送部分
如圖2,無線電能發(fā)送單元的供電電源有兩種:220V交流和24V直流(如汽車電源),由繼電器J選擇。按照交流優(yōu)先的原則,圖中繼電器J的常閉觸點與直流(電池BT1)連接。正常情況下S3處于接通狀態(tài)。
無線充電模塊
當有交流供電時,整流濾波后的約26V直流使繼電器J吸合,發(fā)送電路單元便工作于交流供電方式,此時直流電源BT1與電能發(fā)送電路斷開,同時LED1(綠色)發(fā)光顯示這一狀態(tài)。
經(jīng)繼電器J選擇的+24V直流電主要為發(fā)射線圈L1供電,此外,經(jīng)IC1(78L12)降壓后為集成電路IC2供電,為保證J的動作不影響發(fā)送電路的穩(wěn)定工作,電容C3的容量不得小于2200uF。
圖2無線電能發(fā)送單元電路圖
電能的無線傳送實際上是通過發(fā)射線圈L1和接收線圈L2的互感作用實現(xiàn)的,這里L1與L2構成一個無磁芯的變壓器的原、副線圈。為保證足夠的功率和盡可能高的效率,應選擇較高的調制頻率,同時要考慮到器件的高頻特性,經(jīng)實驗選擇1.6MHz較為合適。IC1為CMOS六非門CD4069,這里只用了三個非門,由F1,F2構成方波振蕩器,產(chǎn)生約1.6MHz的方波,經(jīng)F3緩沖并整形,得到幅度約11V的方波來激勵VMOS功放管IRF640.足以使其工作在開關狀態(tài)(丁類),以保證盡可能高的轉換效率。為保證它與L1C8回路的諧振頻率一致??蓪4定為100pF,R1待調。為此將R1暫定為3K,并串入可調電阻RP1。在諧振狀態(tài),盡管激勵是方波,但L1中的電壓是同頻正弦波。
由此可見,這一部分實際上是個變頻器,它將50Hz的正弦轉變成1.6MHz的正弦。
2 電能接收與充電控制部分
正常情況下,接收線圈L2與發(fā)射線圈L1相距不過幾cm,且接近同軸,此時可獲得較高的傳輸效率。
電能接收與充電控制電路單元的原理如圖3所示。
L2感應得到的1.6MHz的正弦電壓有效值約有16V(空載)。經(jīng)橋式整流(由4只1N4148高頻開關二極管構成)和C5濾波,得到約20V的直流。作為充電控制部分的唯一電源。
由R4,RP2和TL431構成精密參考電壓4.15V(鋰離子電池的充電終止電壓)經(jīng)R12接到運放IC的同相輸入端3。當IC2的反相輸入端2低于4.15V時(充電過程中),IC3輸出的高電位一方面使Q4飽和從而在LED2兩端得到約2V的穩(wěn)定電壓(LED的正向導通具有穩(wěn)壓特性),Q5與R6、R7便據(jù)此構成恒流電路I0=2-0.7R6+R7。另一方面R5使Q3截止,LED3不亮。
游客,如果您要查看本帖隱藏內(nèi)容請回復
性能測試 應保證L1與L2附近沒有其他金屬或磁介質。1 耦合性能
在接收單元空載(不接被充電池)情況下,保持L1與L2同軸,改變L1-L2間距,測量接收單元C5兩端電壓DCV。
在5cm內(nèi),充電控制電路能保證準確可靠的工作,6cm仍可充電。
2 充電控制
保持L1與L2同軸并固定于相距2cm,接上待充電池,并接上電壓表。斷開SW,電流表讀數(shù)為10mA,此為慢充電工作方式;接通SW,電流表讀數(shù)為30mA,此為快充電工作方式。
當充電使電壓表讀數(shù)達到4.15V時,LED3熄且LED2亮,同時電流表讀數(shù)為零,表明電池BT2已被充滿并自動停止充電,并且顯示這一狀態(tài)。
測試時,被充電池可用一只20000uF電容代替,以縮短充電時間便于測試。
3 換能效率
仍保持L1與L2同軸相距2cm,充電器分別工作于快充、慢充和停充,測量。
4 電源切換
斷開S1,繼電器復位,由直流電源BT1供電;接通S1,繼電器吸合,由交流電源供電,此時BT1被斷開。
兩種供電方式對以上測試結果完全相同。
S3用于兩種供電方式的人工切換或強行用直流,一般處于接通狀態(tài)。
結語
作為可行性探索實驗的樣機,本設計僅針對100mAh左右的小容量鋰離子電池和鋰聚合物電池,適用于MP3、MP4和藍牙耳機等袖珍式數(shù)碼產(chǎn)品。將它推廣到大容量電池,并不存在原則性的障礙。當然,從實驗室的樣機到市場中的產(chǎn)品,可能還有比較漫長和艱難的工作,如電磁輻射的泄漏問題,成本控制與產(chǎn)品工藝,以及市場切入與消費啟動等。
評論