淺析紅外熱像儀的成像
1.大氣、煙云等吸收可見光和近紅外線,但是對3~5μm和8~14μm的熱紅外線卻是透明的。因此,這兩個波段被稱為熱紅外線的“大氣窗口” 。利用這兩個窗口,可以使人們在完全無光的夜晚,或是在煙云密布的戰(zhàn)場,清晰地觀察到前方的情況。正是由于這個特點,熱紅外成像技術(shù)軍事上提供了先進的夜視裝備并為飛機、艦艇和坦克裝上了全天候前視系統(tǒng)。這些系統(tǒng)在海灣戰(zhàn)爭中發(fā)揮了非常重要的作用。
2.物體的熱輻射能量的大小,直接和物體表面的溫度相關(guān)。熱輻射的這個特點使人們可以利用它來對物體進行無接觸溫度測量和熱狀態(tài)分析,從而為工業(yè)生產(chǎn),節(jié)約能源,保護環(huán)境等等方面提供了一個重要的檢測手段和診斷工具。
現(xiàn)代的熱成像裝置工作在中紅外區(qū)域(波長3~5μm)或遠(yuǎn)紅外區(qū)域(波長8~12μm)。通過探測物體發(fā)出的紅外輻射,熱成像儀產(chǎn)生一個實時的圖像,從而提供一種景物的熱圖像。并將不可見的輻射圖像轉(zhuǎn)變?yōu)槿搜劭梢姷摹⑶逦膱D像。熱成像儀非常靈敏,能探測到小于0.1℃的溫差。
工作時,熱成像儀利用光學(xué)器件將場景中的物體發(fā)出的紅外能量聚焦在紅外探測器上,然后來自與每個探測器元件的紅外數(shù)據(jù)轉(zhuǎn)換成標(biāo)準(zhǔn)的視頻格式,可以在標(biāo)準(zhǔn)的視頻監(jiān)視器上顯示出來,或記錄在錄像帶上。由于熱成像系統(tǒng)探測的是熱而不是光,所以可全天候使用;又因為它完全是被動式的裝置,沒有光輻射或射頻能量,所以不會暴露使用者的位置。
紅外探測器分為兩類:光子探測器和熱探測器。光子探測器在吸收紅外能量后,直接產(chǎn)生電效應(yīng);熱探測器在吸收紅外能量后,產(chǎn)生溫度變化,從而產(chǎn)生電效應(yīng)。溫度變化引起的電效應(yīng)與材料特性有關(guān)。
光子探測器非常靈敏,其靈敏度依賴于本身溫度。要保持高靈敏度,就必須將光子探測器冷卻至較低的溫度。通常采用的冷卻劑為斯太林(Stirling)或液氮。
熱探測器一般沒有光子探測器那么高的靈敏度但在室溫下也有足夠好的性能,因此不需要低溫冷卻。
紅外與熱成像什么關(guān)系
紅外熱像儀是通過非接觸探測紅外熱量,并將其轉(zhuǎn)換生成熱圖像和溫度值,進而顯示在顯示器上,并可以對溫度值進行計算的一種檢測設(shè)備。紅外熱像儀能夠?qū)⑻綔y到的熱量精確量化,能夠?qū)Πl(fā)熱的故障區(qū)域進行準(zhǔn)確識別和嚴(yán)格分析。 照相機成像得到照片,電視攝像機成像得到電視圖像,都是可見光成像。自然界中,一切物體都可以輻射紅外線,因此利用探測儀測定目標(biāo)的本身和背景之間的紅外線差并可以得到不同的紅外圖像,熱紅外線形成的圖像稱為熱圖。
目標(biāo)的熱圖像和目標(biāo)的可見光圖像不同,它不是人眼所能看到的目標(biāo)可見光圖像,而是目標(biāo)表面溫度分布圖像,換一句話說,紅外熱成像使人眼不能直接看到目標(biāo)的表面溫度分布,變成人眼可以看到的代表目標(biāo)表面溫度分布的熱圖像。
淺談紅外熱像儀
簡單地講:紅外熱像儀就是利用某些特殊的材料對紅外光輻射能產(chǎn)生某些物理量的變化的特性,然后把這種變量轉(zhuǎn)化成電信號,經(jīng)過調(diào)制后再轉(zhuǎn)變成圖象并測溫。這些特殊的材料多為:碲鎘汞、銻化銦、鉑化硅、氧化釩、硅摻雜(或多晶硅)等等。市場上所謂的“制冷”和“非制冷”之分,實際上是指有無制冷器而言。
紅外熱像儀本身并不發(fā)射紅外,它只是被動地吸收而已。這有兩重含義:第一,這種特征加上自然界任何物體都對外輻射紅外信號的特點,使之成為軍事價值極高的設(shè)備;第二,考慮到紅外線在空氣中衰減的幅度,作為高靈敏度探測器材料的要求是何等的高!尤其是要考慮紅外熱像儀本身也有紅外輻射的干擾時。因此,從紅外熱像儀誕生那天開始,對它的技術(shù)保密級別及它的價格都非常的高。這里,我們還姑且不談紅外探測器的生產(chǎn)工藝的難度和成品率。
我們知道:自然界一切溫度在絕對零度-273.15°C以上的物體,由于自身的分子熱運動都在不停地向周圍空間輻射包括紅外波段在內(nèi)的電磁波,其光譜范圍比較廣。分子和原子的運動愈劇烈,輻射的能量愈大,反之輻射的能量愈小。而現(xiàn)階段的紅外熱像儀都只能對其中某一小段光譜范圍的紅外光產(chǎn)生反應(yīng)。比如:3~5μm 或8~14μm,也就是所謂的“大氣窗口”——大氣、煙云等吸收可見光和近紅外線,但是對3~5μm和8~14μm的熱紅外線卻受影響較小。因此,這兩個波段被稱為熱紅外線的“大氣窗口”。同時,物體向外發(fā)射的輻射強度取決于目標(biāo)物體的溫度和物體表面材料的輻射特性。同一種物質(zhì)在不同的狀況下(表面光潔度、環(huán)境溫度、氧化程度等等),向外輻射紅外能量的能力都不同,這種能力與假象中的黑體的比值就是該物質(zhì)在該溫度下的發(fā)射率。(黑體是一種理想化的輻射體,它吸收所有波長的輻射能量,沒有能量的反射和透過,其表面的發(fā)射率為1。)應(yīng)該指出,自然界中并不存在真正的黑體。
也就是說,紅外熱像儀能否觀察到物體,取決于該紅外熱像儀的溫度分辨率和空間分辨率以及被測物體表面的紅外輻射強度和面積,我們甚至可以大略地理解為:溫度分辨率即是最小可辨溫差的能力,空間分辨率是顯示這種溫差的能力?,F(xiàn)階段溫度分辨率是以NETD實驗條件下,環(huán)境溫度為30℃時探測器的最小可辨溫差,而不是熱像儀整機的溫度分辨率。因為探測器本身的背景噪音如果為0.06℃時,后續(xù)處理所帶來的背景噪音疊加后肯定要高于0.06℃,至于能達到多少,那就要看各個廠家后續(xù)電子線路版塊的設(shè)計和處理能力了。這里值得說明的是:溫度分辨率和測溫精度是兩回事。前者是最小可辨溫差的能力;后者是重復(fù)測量的平均溫差。剛接觸紅外熱像儀的朋友通常會混淆這兩個概念。空間分辨率不能等同于視場角,視場角是指鏡頭而言,空間分辨率實際是指紅外熱像儀整機的分辨能力,它與探測器、電路、鏡頭有關(guān),是個綜合指數(shù),以mrad為單位,1.0mrad即千分之一弧度。
紅外熱像儀相關(guān)文章:紅外熱像儀原理
評論