基于完整數(shù)據(jù)采集系統(tǒng)設計方案
本文引用地址:http://cafeforensic.com/article/264931.htm
圖4. ADAS3022的INL和FFT性能
PGIA具有很大的共模輸入范圍、真正的高阻抗輸入(>500 MΩ)和寬動態(tài)范圍,這使得它能夠處理4 mA至20 mA的環(huán)路電流,精確測量小傳感器信號,抑制交流電力線、電機和其他來源的干擾(90 dB的最小CMR)。
輔助差分輸入通道可處理±4.096 V輸入信號。它旁路多路復用器和PGIA級,允許與16位SAR ADC直接接口。片內(nèi)溫度傳感器可以監(jiān)控本地溫度。
這種高集成度可以節(jié)省電路板空間,降低整體部件成本,使得ADAS3022非常適合空間受限的應用,例如自動測試設備、電力線監(jiān)控、工業(yè)自動化、過程控制、病人監(jiān)護以及其他工業(yè)和儀表系統(tǒng),它們都采用±10 V的工業(yè)信號電平工作。
圖5. 采用集成PGA的完整5 V、單電源、8通道數(shù)據(jù)采集解決方案
圖5顯示完整的8通道數(shù)據(jù)采集系統(tǒng)(DAS)。ADAS3022采用±15 V和+5 V模擬和數(shù)字電源,以及1.8V至5V邏輯I/O電源。高效率、低紋波DC-DC升壓轉(zhuǎn)換器 ADP1613使得DAS能夠采用5 V單電源工作。ADP1613使用 ADIsimPower™設計工具配置為單端初級原邊電感(SEPIC)拓撲,提供多路復用器和PGIA所需的±15 V雙極性電源,而不會影響性能。
表1對ADAS3022和分立信號鏈的噪聲性能進行了比較,并利用每個元件的輸入信號幅度、增益、等效噪聲帶寬(ENBW)和折合到輸入端的(RTI)噪聲,計算整個信號鏈的總噪聲。
表1. ADAS3022和分立信號鏈的噪聲性能
AD8475和AD7982(圖2)之間的單極點低通濾波器(LPF)可以衰減來自AD7982的開關電容輸入的反沖,限制高頻噪聲量。LPF的-3 dB帶寬(f-3dB) 為6.1 MHz(R = 20 Ω,C = 1.3 nF),在1 MSPS速率下進行轉(zhuǎn)換時,可快速建立輸入信號。LPF的ENBW計算方法為:
ENBW = π/2 × f-3dB = 9.6 MHz
請注意,此計算方法忽略了來自基準電壓源和LPF的噪聲,因為它不會對主要由PGIA決定的總噪聲產(chǎn)生很大影響。
以使用±5 V輸入范圍為例。在此情況下,AD8251的增益設置為2.漏斗放大器設置的固定增益為0.4,適用于所有四種輸入范圍。因此AD7982要處理0.5V至4.5V的差分信號(4 V p-p)。ADG1208的RTI噪聲從Johnson/Nyquist噪聲公式得出:en2 = 4KBTRON, 其中KB = 1.38 × 10 23 J/K, T = 300K, and RON = 270 Ω。
AD8251的RTI噪聲由數(shù)據(jù)手冊中增益為2時的27 nV/√Hz噪聲密度得出。同樣,AD8475的RTI噪聲也由10 nV/√Hz噪聲密度得出,使用的增益為0.8 (2 × 0.4)。在這些計算中,ENBW = 9.6 MHz.AD7982的RTI噪聲則根據(jù)數(shù)據(jù)手冊中增益為0.8時的95.5 dB SNR計算得到。整個信號鏈的總RTI噪聲根據(jù)分立元件的RTI噪聲的方和根(rss)計算。89.5 dB的總SNR可通過公式SNR = 20 log(VINrms/RTITotal)計算。
雖然分立信號鏈的理論噪聲估計值(SNR)和整體性能與ADAS3022相當,特別是在低增益(G = 1和G = 2)和低吞吐率(遠低于1 MSPS)條件下,但它并非理想解決方案。與分立式解決方案相比,ADAS3022可以節(jié)省大約50%的成本和大約67%的電路板空間,它還可以接收其他三個輸入范圍(±0.64 V、±20.48 V、±24.576 V),這是分立式解決方案無法提供的。
結論
下一代工業(yè)PLC模塊需要高精度、可靠運行和功能靈活性,所有這些特性都必須通過外形小巧的低成本產(chǎn)品提供。ADAS3022具有業(yè)界領先的集成度和性能,支持廣泛的電壓和電流輸入,以便處理工業(yè)自動化和過程控制的各種傳感器信號。ADAS3022是PLC模擬輸入模塊和其他數(shù)據(jù)采集卡的理想之選,它使得工業(yè)制造商能夠讓他們的系統(tǒng)具有與眾不同的特性,同時滿足更加嚴苛的用戶要求。
評論