色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          "); //-->

          博客專欄

          EEPW首頁(yè) > 博客 > 重參數(shù)新方法,ACNet的升級(jí)版DBB

          重參數(shù)新方法,ACNet的升級(jí)版DBB

          發(fā)布人:計(jì)算機(jī)視覺(jué)工坊 時(shí)間:2022-10-19 來(lái)源:工程師 發(fā)布文章
          作者丨ChaucerG

          來(lái)源丨手寫AI 

          1、開(kāi)篇小記知識(shí)點(diǎn)1:

          并行多分支結(jié)構(gòu)提取的特征具有更強(qiáng)的表征性;

          具體可以回憶參考DenseNet、VOVNet、Res2Net以及PeleeNet(后續(xù)均會(huì)有解讀)。
          知識(shí)點(diǎn)2:

          并行多分支結(jié)構(gòu)會(huì)帶來(lái)更大別的計(jì)算開(kāi)銷;

          具體可以參考CSPNet對(duì)此的分析。
          知識(shí)點(diǎn)3:

          使用 1×3 conv + 3×1 conv + 3×3 conv 代替原本一個(gè)的 3×3 conv的ACNet重參方法是有效的;

          具體可以參考ACNet的分析。
          知識(shí)點(diǎn)4:重參有沒(méi)有更好的呢?
          答:有,DBB可以說(shuō)就是ACNet v2,全面升級(jí)!
          2、DBB 簡(jiǎn)述

          Diverse Branch Block是繼ACNet的又一次對(duì)網(wǎng)絡(luò)結(jié)構(gòu)重參數(shù)化的探索,即ACNet v2,DBB設(shè)計(jì)了一個(gè)類似Inception的模塊,以多分支的結(jié)構(gòu)豐富卷積塊的特征空間,各分支結(jié)構(gòu)包括平均池化,多尺度卷積等。最后在推理階段前,把多分支結(jié)構(gòu)中進(jìn)行重參數(shù)化,融合成一個(gè)主分支。加快推理速度的同時(shí),順帶提升一下精度!圖片上圖給出了設(shè)計(jì)的DBB結(jié)構(gòu)示意圖。類似Inception,它采用1×1、1×1?K×K、1×1?AVG等組合方式對(duì)原始K×K卷積進(jìn)行增強(qiáng)。對(duì)于1×1?K×K分支,設(shè)置中間通道數(shù)等于輸入通道數(shù)并將1×1卷積初始化為Identity矩陣;其他分支則采用常規(guī)方式初始化。此外,在每個(gè)卷積后都添加BN層用于提供訓(xùn)練時(shí)的非線性,這對(duì)于性能提升很有必要。

          3、DBB的實(shí)現(xiàn)

          以下是 DBB 的Pytorch實(shí)現(xiàn):

          import torch
          import torch.nn as nn
          import torch.nn.functional as F
          from dbb_transforms import *


          def conv_bn(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
                      padding_mode='zeros')
          :

              conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                     stride=stride, padding=padding, dilation=dilation, groups=groups,
                                     bias=False, padding_mode=padding_mode)
              bn_layer = nn.BatchNorm2d(num_features=out_channels, affine=True)
              se = nn.Sequential()
              se.add_module('conv', conv_layer)
              se.add_module('bn', bn_layer)
              return se


          class IdentityBasedConv1x1(nn.Conv2d):
              def __init__(self, channels, groups=1):
                  super(IdentityBasedConv1x1, self).__init__(in_channels=channels,
                                                             out_channels=channels,
                                                             kernel_size=1,
                                                             stride=1,
                                                             padding=0,
                                                             groups=groups,
                                                             bias=False)

                  assert channels % groups == 0
                  input_dim = channels // groups
                  id_value = np.zeros((channels, input_dim, 11))
                  for i in range(channels):
                      id_value[i, i % input_dim, 00] = 1
                  self.id_tensor = torch.from_numpy(id_value).type_as(self.weight)
                  nn.init.zeros_(self.weight)

              def forward(self, input):
                  kernel = self.weight + self.id_tensor.to(self.weight.device)
                  result = F.conv2d(input,
                                    kernel,
                                    None,
                                    stride=1,
                                    padding=0,
                                    dilation=self.dilation,
                                    groups=self.groups)
                  return result

              def get_actual_kernel(self):
                  return self.weight + self.id_tensor.to(self.weight.device)


          class BNAndPadLayer(nn.Module):
              def __init__(self,
                           pad_pixels,
                           num_features,
                           eps=1e-5,
                           momentum=0.1,
                           affine=True,
                           track_running_stats=True)
          :

                  super(BNAndPadLayer, self).__init__()
                  self.bn = nn.BatchNorm2d(num_features,
                                           eps,
                                           momentum,
                                           affine,
                                           track_running_stats)
                  self.pad_pixels = pad_pixels

              def forward(self, input):
                  output = self.bn(input)
                  if self.pad_pixels > 0:
                      if self.bn.affine:
                          pad_values = self.bn.bias.detach() - self.bn.running_mean * self.bn.weight.detach() / torch.sqrt(
                              self.bn.running_var + self.bn.eps)
                      else:
                          pad_values = - self.bn.running_mean / torch.sqrt(self.bn.running_var + self.bn.eps)
                      output = F.pad(output, [self.pad_pixels] * 4)
                      pad_values = pad_values.view(1-111)
                      output[:, :, 0:self.pad_pixels, :] = pad_values
                      output[:, :, -self.pad_pixels:, :] = pad_values
                      output[:, :, :, 0:self.pad_pixels] = pad_values
                      output[:, :, :, -self.pad_pixels:] = pad_values
                  return output

              @property
              def weight(self):
                  return self.bn.weight

              @property
              def bias(self):
                  return self.bn.bias

              @property
              def running_mean(self):
                  return self.bn.running_mean

              @property
              def running_var(self):
                  return self.bn.running_var

              @property
              def eps(self):
                  return self.bn.eps


          class DiverseBranchBlock(nn.Module):

              def __init__(self,
                           in_channels,
                           out_channels,
                           kernel_size,
                           stride=1,
                           padding=0,
                           dilation=1,
                           groups=1,
                           internal_channels_1x1_3x3=None,
                           deploy=False,
                           nonlinear=None,
                           single_init=False)
          :

                  super(DiverseBranchBlock, self).__init__()
                  self.deploy = deploy

                  if nonlinear is None:
                      self.nonlinear = nn.Identity()
                  else:
                      self.nonlinear = nonlinear

                  self.kernel_size = kernel_size
                  self.out_channels = out_channels
                  self.groups = groups
                  assert padding == kernel_size // 2

                  if deploy:
                      self.dbb_reparam = nn.Conv2d(in_channels=in_channels,
                                                   out_channels=out_channels,
                                                   kernel_size=kernel_size,
                                                   stride=stride,
                                                   padding=padding,
                                                   dilation=dilation,
                                                   groups=groups,
                                                   bias=True)

                  else:
                      self.dbb_origin = conv_bn(in_channels=in_channels,
                                                out_channels=out_channels,
                                                kernel_size=kernel_size,
                                                stride=stride,
                                                padding=padding,
                                                dilation=dilation,
                                                groups=groups)

                      self.dbb_avg = nn.Sequential()
                      if groups < out_channels:
                          self.dbb_avg.add_module('conv',
                                                  nn.Conv2d(in_channels=in_channels,
                                                            out_channels=out_channels,
                                                            kernel_size=1,
                                                            stride=1,
                                                            padding=0,
                                                            groups=groups,
                                                            bias=False))

                          self.dbb_avg.add_module('bn',
                                                  BNAndPadLayer(pad_pixels=padding,
                                                                num_features=out_channels))

                          self.dbb_avg.add_module('avg',
                                                  nn.AvgPool2d(kernel_size=kernel_size,
                                                               stride=stride,
                                                               padding=0))

                          self.dbb_1x1 = conv_bn(in_channels=in_channels,
                                                 out_channels=out_channels,
                                                 kernel_size=1,
                                                 stride=stride,
                                                 padding=0,
                                                 groups=groups)
                      else:
                          self.dbb_avg.add_module('avg',
                                                  nn.AvgPool2d(kernel_size=kernel_size,
                                                               stride=stride,
                                                               padding=padding))

                      self.dbb_avg.add_module('avgbn',
                                              nn.BatchNorm2d(out_channels))

                      if internal_channels_1x1_3x3 is None:
                          # For mobilenet, it is better to have 2X internal channels
                          internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels

                      self.dbb_1x1_kxk = nn.Sequential()
                      if internal_channels_1x1_3x3 == in_channels:
                          self.dbb_1x1_kxk.add_module('idconv1',
                                                      IdentityBasedConv1x1(channels=in_channels, groups=groups))
                      else:
                          self.dbb_1x1_kxk.add_module('conv1',
                                                      nn.Conv2d(in_channels=in_channels,
                     out_channels=internal_channels_1x1_3x3,
                                                      kernel_size=1,
                                                      stride=1,
                                                      padding=0,
                                                      groups=groups,
                                                      bias=False))
                      self.dbb_1x1_kxk.add_module('bn1',
                                                  BNAndPadLayer(pad_pixels=padding,
                         num_features=internal_channels_1x1_3x3,affine=True))
                      self.dbb_1x1_kxk.add_module('conv2',
                                                  nn.Conv2d(in_channels=internal_channels_1x1_3x3, 
                        out_channels=out_channels,
                                                            kernel_size=kernel_size,
                                                            stride=stride,
                                                            padding=0,
                                                            groups=groups,
                                                            bias=False))
                      self.dbb_1x1_kxk.add_module('bn2', nn.BatchNorm2d(out_channels))

                  #   The experiments reported in the paper used the default initialization of bn.weight (all as 1).
                  #   But changing the initialization may be useful in some cases.
                  if single_init:
                      #   Initialize the bn.weight of dbb_origin as 1 and others as 0.
                      #   This is not the default setting.
                      self.single_init()

              def get_equivalent_kernel_bias(self):
                  k_origin, b_origin = transI_fusebn(self.dbb_origin.conv.weight,
                                                     self.dbb_origin.bn)

                  if hasattr(self, 'dbb_1x1'):
                      # 按照方式1進(jìn)行conv+bn的融合
                      k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight,
                                                   self.dbb_1x1.bn)
                      # 按照方式方式6進(jìn)行多尺度卷積的合并
                      k_1x1 = transVI_multiscale(k_1x1,
                                                 self.kernel_size)
                  else:
                      k_1x1, b_1x1 = 00

                  if hasattr(self.dbb_1x1_kxk, 'idconv1'):
                      k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel()
                  else:
                      k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weight
                  # 按照方式1進(jìn)行conv+bn的融合
                  k_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(k_1x1_kxk_first,
                                                                   self.dbb_1x1_kxk.bn1)
                  # 按照方式1進(jìn)行conv+bn的融合
                  k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(self.dbb_1x1_kxk.conv2.weight,
                                                                     self.dbb_1x1_kxk.bn2)
                  # 按照方式3進(jìn)行1x1卷積與kxk卷積的合并
                  k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(k_1x1_kxk_first,
                                                                        b_1x1_kxk_first,
                                                                        k_1x1_kxk_second,
                                                                        b_1x1_kxk_second,
                                                                        groups=self.groups)

                  k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups)
                  # 按照方式1進(jìn)行conv+bn的融合
                  k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg.to(self.dbb_avg.avgbn.weight.device),
                                                                     self.dbb_avg.avgbn)
                  if hasattr(self.dbb_avg, 'conv'):
                      # 按照方式1進(jìn)行conv+bn的融合
                      k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(self.dbb_avg.conv.weight,
                                                                       self.dbb_avg.bn)
                      # 按照方式3進(jìn)行1x1卷積與kxk卷積的合并
                      k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(k_1x1_avg_first,
                                                                            b_1x1_avg_first,
                                                                            k_1x1_avg_second,
                                                                            b_1x1_avg_second,
                                                                            groups=self.groups)
                  else:
                      k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_second
                  # 按照方式2進(jìn)行分支的合并
                  return transII_addbranch((k_origin,
                                            k_1x1,
                                            k_1x1_kxk_merged,
                                            k_1x1_avg_merged),
                                           (b_origin,
                                            b_1x1,
                                            b_1x1_kxk_merged,
                                            b_1x1_avg_merged))

              def switch_to_deploy(self):
                  if hasattr(self, 'dbb_reparam'):
                      return
                  kernel, bias = self.get_equivalent_kernel_bias()
                  self.dbb_reparam = nn.Conv2d(in_channels=self.dbb_origin.conv.in_channels,
                                               out_channels=self.dbb_origin.conv.out_channels,
                                               kernel_size=self.dbb_origin.conv.kernel_size,
                                               stride=self.dbb_origin.conv.stride,
                                               padding=self.dbb_origin.conv.padding,
                                               dilation=self.dbb_origin.conv.dilation,
                                               groups=self.dbb_origin.conv.groups, bias=True)
                  self.dbb_reparam.weight.data = kernel
                  self.dbb_reparam.bias.data = bias
                  for para in self.parameters():
                      para.detach_()
                  self.__delattr__('dbb_origin')
                  self.__delattr__('dbb_avg')
                  if hasattr(self, 'dbb_1x1'):
                      self.__delattr__('dbb_1x1')
                  self.__delattr__('dbb_1x1_kxk')

              def forward(self, inputs):

                  if hasattr(self, 'dbb_reparam'):
                      return self.nonlinear(self.dbb_reparam(inputs))

                  out = self.dbb_origin(inputs)
                  if hasattr(self, 'dbb_1x1'):
                      out += self.dbb_1x1(inputs)
                  out += self.dbb_avg(inputs)
                  out += self.dbb_1x1_kxk(inputs)
                  return self.nonlinear(out)

              def init_gamma(self, gamma_value):
                  if hasattr(self, "dbb_origin"):
                      torch.nn.init.constant_(self.dbb_origin.bn.weight,
                                              gamma_value)
                  if hasattr(self, "dbb_1x1"):
                      torch.nn.init.constant_(self.dbb_1x1.bn.weight,
                                              gamma_value)
                  if hasattr(self, "dbb_avg"):
                      torch.nn.init.constant_(self.dbb_avg.avgbn.weight,
                                              gamma_value)
                  if hasattr(self, "dbb_1x1_kxk"):
                      torch.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight,
                                              gamma_value)

              def single_init(self):
                  self.init_gamma(0.0)
                  if hasattr(self, "dbb_origin"):
                      torch.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)

          話不多說(shuō),直接對(duì)比ONNX的輸出,就問(wèn)你香不香?。?!圖片

          4、參考

          [1].https://github.com/DingXiaoH/DiverseBranchBlock/blob/main/diversebranchblock.py

          本文僅做學(xué)術(shù)分享,如有侵權(quán),請(qǐng)聯(lián)系刪文。


          *博客內(nèi)容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀點(diǎn),如有侵權(quán)請(qǐng)聯(lián)系工作人員刪除。



          關(guān)鍵詞: AI

          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉