語音識別在微機器人控制系統(tǒng)中的應(yīng)用
摘要:介紹了一種應(yīng)用于微機器人控制平臺的語音識別算法,可實現(xiàn)簡單命令詞語的識別,控制微機器人的移動。利用K均值分段法,在每次計算完觀察值最佳狀態(tài)序列后,插入一個重估過程,隨時調(diào)整參數(shù)以識別下一個句子。實驗結(jié)果表明,這種實時學(xué)習(xí)的語音識剮算法適合嵌入式應(yīng)用。
本文引用地址:http://cafeforensic.com/article/149013.htm關(guān)鍵詞:微機器人語音識別隱式馬爾可夫模型嵌入式系統(tǒng)
本文基于毫米級全方位無回轉(zhuǎn)半徑移動機器人課題。微系統(tǒng)配置示意圖如圖1所示。主要由主機Host(配有圖像采集卡)、兩個CCD攝像頭(其中一個為顯微攝像頭)、微移動裝配平臺、微機器人本體和系統(tǒng)控制電路板等組成。計算機和攝像機組用于觀察微機器人的方位,控制系統(tǒng)控制微機器人的移動。
本文在系統(tǒng)控制電路中嵌入式實現(xiàn)語音識別算法,通過語音控制微機器人。
微機器人控制系統(tǒng)的資源有限,控制方法比較復(fù)雜,并且需要有較高的實時性,因此本文采用的語音識別算法必須簡單、識別率高、占用系統(tǒng)資源少。
HMM(隱馬爾可夫模型)的適應(yīng)性強、識別率高,是當(dāng)前語音識別的主流算法。使用基于HMM非特定人的語音識別算法雖然借助模板匹配減小了識別所需的資源,但是前期的模板儲存工作需要大量的計算和存儲空間,因此移植到嵌入式系統(tǒng)還有一定的難度,所以很多嵌入式應(yīng)用平臺的訓(xùn)練部分仍在PC機上實現(xiàn)。
為了使訓(xùn)練和識別都在嵌入式系統(tǒng)上實現(xiàn),本文給出了一種基于K均值分段HMM模型的實時學(xué)習(xí)語音識別算法,不僅解決了上述問題,而且做到了智能化,實現(xiàn)了真正意義上的自動語音識別。
1增量K均值分段HMM的算法及實現(xiàn)
由于語音識別過程中非特定的因素較多,為了提高識別的準(zhǔn)確率,針對本系統(tǒng)的特點,采用動態(tài)改變識別參數(shù)的方法提高系統(tǒng)的識別率。
訓(xùn)練算法是HMM中運算量最大、最復(fù)雜的部分,訓(xùn)練算法的輸出是即將存儲的模型。目前的語音識別系統(tǒng)大都使用貝斯曼參數(shù)的HMM模型,采取最大似然度算法。這些算法通常是批處理函數(shù),所有的訓(xùn)練數(shù)據(jù)要在識別之前訓(xùn)練好并存儲。因此很多嵌入式系統(tǒng)因為資源有限不能達(dá)到高識別率和實時輸出。
本系統(tǒng)采用了自適應(yīng)增量K均值分段算法。在每次輸入新的語句時都連續(xù)地計算而不對前面的數(shù)據(jù)進(jìn)行存儲,這可以節(jié)約大量的時間和成本。輸入語句時由系統(tǒng)的識別結(jié)果判斷輸入語句的序號,并對此語句的參數(shù)動態(tài)地修改,真正做到了實時學(xué)習(xí)。
K均值分段算法是基于最佳狀態(tài)序列的理論,因此可以采用Viterbi算法得到最佳狀態(tài)序列,從而方便地在線修改系統(tǒng)參數(shù),使訓(xùn)練的速度大大提高。
為了達(dá)到本系統(tǒng)所需要的功能,對通常的K均值算法作了一定的改進(jìn)。在系統(tǒng)無人監(jiān)管的情況下,Viterbi解碼計算出最大相似度的語音模型,根據(jù)這個假設(shè)計算分段K均值算法的輸入?yún)?shù),對此模型進(jìn)行參數(shù)重估。首先按照HMM模型的狀態(tài)數(shù)進(jìn)行等間隔分段,每個間隔的數(shù)據(jù)段作為某一狀態(tài)的訓(xùn)練數(shù)據(jù),計算模型的初始參數(shù)λ=f(a,A,B)。采用Viterbi的最佳狀態(tài)序列搜索,得到當(dāng)前最佳狀態(tài)序列參數(shù)和重估參數(shù)θ,其中概率密度函數(shù)P(X,S|θ)代替了最大似然度算法中的P(X,θ),在不同的馬爾科夫狀態(tài)和重估之間跳轉(zhuǎn)?;贙均值算法的參數(shù)重估流程如下:
為了使參數(shù)能更快地收斂,在每幀觀察語音最佳狀態(tài)序列的計算結(jié)束后,加入一個重估過程,以求更快地響應(yīng)速度。
可以看到,增量K均值算法的特點為:在每次計算完觀察值最佳狀態(tài)序列后,插入一個重估過程。隨時調(diào)整參數(shù)以識別下一個句子。
由于采用混合高斯密度函數(shù)作為輸出概率分布可以達(dá)到較好的識別效果,因此本文采用M的混合度對數(shù)據(jù)進(jìn)行訓(xùn)練。
對λ重估,并比較收斂性,最終得到HMM模型參數(shù)訓(xùn)練結(jié)果。
可見,用K均值法在線修改時,一次數(shù)據(jù)輸入會有多次重估過程,這使系統(tǒng)使用最近的模型估計后續(xù)語句的最佳狀態(tài)序列成為可能。但是對于在線修改參數(shù)要求,快速收斂是很重要的。為了得到更好的Viterbi序列,最佳狀態(tài)序列使用了漸增的算法模型,即快速收斂算法。
語音識別的具體實現(xiàn)過程為:數(shù)字語音信號通過預(yù)處理和特征向量的提取,用戶通過按鍵選擇學(xué)習(xí)或者識別模式;如果程序進(jìn)入訓(xùn)練過程,即用戶選擇進(jìn)行新詞條的學(xué)習(xí),則用分段K均值法對數(shù)據(jù)進(jìn)行訓(xùn)練得到模板;如果進(jìn)入識別模式,則從Flash中調(diào)出聲音特征向量,進(jìn)行HMM算法識別。在識別出結(jié)果后,立即將識別結(jié)果作為正確結(jié)果與前一次的狀態(tài)做比較,得到本詞條更好的模板,同時通過LED數(shù)字顯示和語音輸出結(jié)果。系統(tǒng)軟件流程如圖2所示。
對采集到的語音進(jìn)行16kHz、12位量化,并對數(shù)字語音信號進(jìn)行預(yù)加重:
L選擇為320個點,用短時平均能量和平均過零率判斷起始點,去除不必要的信息。
對數(shù)據(jù)進(jìn)行FFT運算,得到能量譜,通過24通道的帶通濾波輸出X(k),然后再通過DCT運算,提取12個MFCC系數(shù)和一階二階對數(shù)能量,提取38個參數(shù)可以使系統(tǒng)識別率得到提高。
為了進(jìn)行連接詞識別,需要由訓(xùn)練數(shù)據(jù)得到單個詞條的模型。方法為:首先從連接詞中分離出每個孤立的詞條,然后再進(jìn)行孤立詞條的模型訓(xùn)練。對于本系統(tǒng)不定長詞條的情況,每個詞條需要有一套初始的模型參數(shù),然后按照分層構(gòu)筑的HMM算法將所有詞串分成孤立的詞條。對每個詞條進(jìn)行參數(shù)的重估,判斷是否收斂。如果差異小于某個域值就判斷為收斂;否則將得到的參數(shù)作為新的初始參數(shù)再進(jìn)行重估,直到收斂。
2實驗結(jié)果
實驗采用30個人(15男,15女)的聲音模型進(jìn)行識別。首先由10人(5男,5女)對5個命令詞(前進(jìn)、后退、左移、右移、快速)分別進(jìn)行初始數(shù)據(jù)訓(xùn)練,每人每詞訓(xùn)練10次,得到訓(xùn)練模板。然后再由這30人隨機進(jìn)行非特定人語音識別。采用6狀態(tài)的HMM模型,高斯混合度選為14,得到圖3的實驗結(jié)果。
評論