多通道相位同調(diào)RF量測(cè)系統(tǒng)設(shè)定
標(biāo)簽:MIMO基頻信號(hào) 多通道
本文引用地址:http://cafeforensic.com/article/154517.htm自從傳送出第一筆無線電波之后,工程師就持續(xù)發(fā)明新方法,以優(yōu)化電磁微波訊號(hào)。RF 訊號(hào)已廣泛用于多種應(yīng)用,其中又以無線通信與 RADAR 的 2 項(xiàng)特殊應(yīng)用正利用此常見技術(shù)。
就本質(zhì)而言,此 2 項(xiàng)應(yīng)用的獨(dú)到之處,即是利用電磁波的空間維度 (Spatial dimension)。直到今天,許多無線通信系統(tǒng)整合了多重輸入/輸出 (MIMO) 天線架構(gòu),以利用多重路徑的訊號(hào)傳播 (Propagation) 功能。
此外,目前有多款 RADAR 系統(tǒng)均使用電磁波束控制 (Beam steering),以取代傳統(tǒng)的機(jī)械控制傳輸訊號(hào)。這些應(yīng)用均屬于多通道相位同調(diào) (Phase coherent) RF 量測(cè)系統(tǒng)的主要行進(jìn)動(dòng)力之一。
介紹
The modular architectures of PXI RF 儀器 (如 NI PXIe-5663 6.6 GHz RF 向量訊號(hào)分析器與 NI PXIe-5673 6.6 GHz RF 向量訊號(hào)產(chǎn)生器) 的調(diào)變架構(gòu),使其可進(jìn)行 MIMO 與波束賦形 (Beamforming) 應(yīng)用所需的相位同調(diào) (Phase coherent) RF 量測(cè)作業(yè)。圖 1 表示常見的量測(cè)系統(tǒng),為 1 組 PXI-1075 - 18 槽式機(jī)箱中安裝 4 組同步化 RF 分析器,與 2 組同步化 RF 訊號(hào)產(chǎn)生器。
常見的PXI相位同調(diào)RF量測(cè)系統(tǒng)
圖 1. 常見的 PXI 相位同調(diào) RF 量測(cè)系統(tǒng)
此篇技術(shù)文件將說明設(shè)定相位同調(diào) RF 產(chǎn)生或擷取系統(tǒng)時(shí),其所需的技術(shù)。此外,亦將針對(duì)多組 RF 分析器之間的相位延遲,逐步呈現(xiàn)校準(zhǔn)作業(yè),以達(dá)最佳效能。
相位同調(diào) RF 訊號(hào)產(chǎn)生
若要設(shè)定任何相位同調(diào) RF 系統(tǒng),則必須同步化裝置的所有頻率訊號(hào)。透過 NI PXIe-5673 - 6.6 RF 向量訊號(hào)產(chǎn)生器,即可直接進(jìn)行升轉(zhuǎn)換 (Upconversion),以將基頻 (Baseband) 波形編譯為 RF 訊號(hào)。圖 2 即說明雙信道 RF 向量訊號(hào)產(chǎn)生器的基本架構(gòu)。
同步化2個(gè)RF產(chǎn)生通道
圖 2. 同步化 2 個(gè) RF 產(chǎn)生通道
請(qǐng)注意,在 2 個(gè)通道之間必須共享 2 組基頻取樣頻率與局部震蕩器。
在圖 2 中可發(fā)現(xiàn) NI PXIe-5673 共包含 3 個(gè)模塊,分別為:PXI-5652 連續(xù)波合成器 (Synthesizer)、PXIe-5450 任意波形產(chǎn)生器,與 PXIe-5611 - RF 調(diào)變器。由于這些模塊可合并做為單信道的 RF 向量訊號(hào)產(chǎn)生器,因此亦可整合其他任意波形產(chǎn)生器 (AWG) 與 RF 升轉(zhuǎn)換器 (Upconverter),用于多信道的訊號(hào)產(chǎn)生應(yīng)用。在圖 2 中,共有 1 組標(biāo)準(zhǔn)的 PXIe-5673 (由 3 個(gè)模塊所構(gòu)成) 整合 1 組 NI PXIe-5673 MIMO 擴(kuò)充組合。而擴(kuò)充組合共容納了 1 組 AWG 與調(diào)變器,可建構(gòu)第二個(gè)訊號(hào)產(chǎn)生信道。
相位同調(diào) RF 訊號(hào)擷取
除了 PXIe-5673 - RF 向量訊號(hào)產(chǎn)生器之外,PXIe-5663 - RF 向量訊號(hào)分析器亦可設(shè)定用于多通道應(yīng)用。當(dāng)設(shè)定多組 PXIe-5663 進(jìn)行相位同調(diào) RF 訊號(hào)擷取作業(yè)時(shí),亦必須注意類似事項(xiàng),以確實(shí)進(jìn)行 LO 與基頻/中頻 (IF) 訊號(hào)的同步化。PXIe-5663 可利用訊號(hào)階段 (Signal stage) 并降轉(zhuǎn)換為 IF,亦可進(jìn)行數(shù)字升轉(zhuǎn)換為基頻。
與傳統(tǒng)的 3 階段式超外差 (Superheterodyne) 向量訊號(hào)分析器不同,此架構(gòu)僅需于各個(gè)通道之間同步化單一局部震蕩器 (Local oscillator,LO),因此為設(shè)定相位同調(diào)應(yīng)用最簡(jiǎn)單的方法之一。若要同步化多組 PXI-5663 分析器,則必須于各組分析器之間分配共享的 IF 取樣頻率與 LO,以確保各個(gè)通道均是以相位同調(diào)的方式進(jìn)行設(shè)定。圖 3 則為雙信道系統(tǒng)的范例。
同步化雙信道的VSA系統(tǒng)
圖 3. 同步化雙信道的 VSA 系統(tǒng)
在圖 3 中可看到 PXIe-5663 - RF 向量訊號(hào)分析器是由 PXI-5652 連續(xù)波合成器、PXIe-5601 - RF 降轉(zhuǎn)換器,與 PXIe-5622 - IF 示波器所構(gòu)成。當(dāng)向量訊號(hào)分析器整合 PXIe-5663 MIMO 擴(kuò)充組合時(shí),隨即新增了降轉(zhuǎn)換器與示波器,以建構(gòu)雙信道的 RF 擷取系統(tǒng)。
若要了解多組 RF 向量訊號(hào)分析器的同步化方法,則必須先行深入了解 PXIe-5663 - RF 訊號(hào)分析器的詳細(xì)程序圖。在圖 4 中可看到,即便僅使用單一 LO 將 RF 降轉(zhuǎn)換為 IF,則各組分析器實(shí)際亦必須共享 3 組頻率。
圖 4. PXIe-5663 - RF 向量訊號(hào)分析器的詳細(xì)程序圖
如圖 4 所示,各個(gè) RF 通道之間必須共享 LO、ADC 取樣頻率、數(shù)字降轉(zhuǎn)換器 (DDC),與數(shù)值控制震蕩器 (Numerically controlled oscillator,NCO)。如圖 4 所見,即便各組示波器之間共享 10 MHz 頻率,其實(shí)亦極為足夠。當(dāng)各組示波器之間僅共享 10 MHz 參考時(shí),即可產(chǎn)生非相關(guān)的信道對(duì)信道相位抖動(dòng) (Phase jitter);而于 IF 產(chǎn)生的相位噪聲強(qiáng)度,亦將由 RF 的 LO 相位噪聲所覆蓋。
數(shù)字降轉(zhuǎn)換的特性
在了解相位同調(diào) RF 擷取系統(tǒng)的精確校準(zhǔn)方式之前,必須先了解應(yīng)如何于基頻觀察 RF 的訊號(hào)特性。此處以相同中心頻率,且以回送 (Loopback) 模式設(shè)定的 VSG 與VSA 為例。如圖 5 所示,具備精確分析器中心頻率的降轉(zhuǎn)換 RF 訊號(hào),將依基頻呈現(xiàn)為 DC 訊號(hào)。此外,由于基頻訊號(hào)屬于復(fù)雜波形,因此亦可將訊號(hào)的相位 (Θ) 分析而為時(shí)間函式。在圖 5 中可發(fā)現(xiàn),只要 RF 向量訊號(hào)產(chǎn)生器與分析器互為同相 (In-phase),則「Phase vs. time」波形將呈現(xiàn)穩(wěn)定的相位偏移 (Phase offset)。
評(píng)論