色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 手機與無線通信 > 設(shè)計應(yīng)用 > CMOS探測器在射線檢測中的設(shè)計應(yīng)用

          CMOS探測器在射線檢測中的設(shè)計應(yīng)用

          作者: 時間:2010-04-07 來源:網(wǎng)絡(luò) 收藏

          概述:以為記錄介質(zhì)的數(shù)字化技術(shù),精度高、溫度適應(yīng)性好、結(jié)構(gòu)適應(yīng)性強。掃描探測單元排成線陣列,需要在時進(jìn)行相對掃描運動,逐線采集并拼成完整的透照投影圖像。介紹了檢測工裝,完成了的固定、位置調(diào)節(jié)及實現(xiàn)與檢測工件的相對運動。介紹了檢測中的探測器配置與校準(zhǔn)、透照方式選取、運動速度控制、檢測參數(shù)優(yōu)化、缺陷定量分析和圖像存檔管理等。結(jié)果表明,經(jīng)過工藝優(yōu)化,探測器能夠?qū)崿F(xiàn)大多數(shù)產(chǎn)品零部件的檢測。最后分析了中存在的問題及后續(xù)研究方向。


          Application of Direct Radiography Using CMOS X-ray Linear Array Detector
          SUN Chao-Ming, LI Qiang, WANG Zeng-Yong, LI Jian-Wen
          (Institute of Machinery Manufacturing Technology, CAEP, Mian yang 621900, China)
          Abstract: The digital radiography(DR) using complementary metal oxide silicon(CMOS) X-ray linear array detector as record media had advantages of higher spatial resolution, better temperature adaptability and flexible structure adaptability. During radiographic testing, relative movement of the detector and the work piece was necessary to collect each line of the scanned image, as the detecting units were lined in a row. So the testing equipments were designed to mount the detector, adjust the relative position and move the work piece according to its structure. The testing procedure comprising configuration and calibration of the detector, selection of the applicable scan mode, control of the scan speed, optimizing of the testing parameters, segmentation and quantification of defects and archiving and retrieval of the digital images were described. After optimizing the testing process, it showed that CMOS detector had capability to achieve better images and it could be used in radiographic testing widely. The benefit of using DR and some problems to be solved were talked in the end.
          Keywords: Digital radiography; CMOS X-ray linear array detector; Process optimization

          本文引用地址:http://cafeforensic.com/article/157529.htm

          1 CMOS探測器簡介
          射線檢測技術(shù)利用X射線探測材料內(nèi)部的不連續(xù)性,并在記錄介質(zhì)上顯示出圖像。隨著技術(shù)的不斷進(jìn)步,射線檢測從傳統(tǒng)的以膠片為記錄介質(zhì)的照相方法不斷擴展,形成了多種數(shù)字化射線檢測手段,如底片的數(shù)字化處理技術(shù)(Film Digitisation)、射線實時成像技術(shù)(Radioscopy)、計算機射線成像系統(tǒng)(Computed Radiography)和射線數(shù)字直接成像檢測技術(shù)(Direct Radiography)等[1]。實際應(yīng)用中需要根據(jù)檢測要求的分辨率和相對靈敏度選用合適的方法。相對于其它射線記錄介質(zhì)(如CCD、多晶硅等),CMOS(互補的金屬氧化硅)技術(shù)更具有性能優(yōu)勢。目前,CMOS探測器的最小像素尺寸可達(dá)39μm,檢測精度較高,溫度適應(yīng)性好,結(jié)構(gòu)適應(yīng)性強。
          較之龐大的增強器成像系統(tǒng),CMOS射線掃描探測器(圖1)結(jié)構(gòu)小巧,內(nèi)部芯片集成度高。較之CCD成像方式,CMOS的每個探測點都有自己的放大器進(jìn)行單獨配置。CMOS在其內(nèi)部通過轉(zhuǎn)換屏將接收到的射線轉(zhuǎn)換為光線,直接與轉(zhuǎn)換屏接觸的探測點單元將光線轉(zhuǎn)換為電子,每個探測點單元有自己的放大器將電信號放大,最后在探測器內(nèi)對信號進(jìn)行A/D轉(zhuǎn)換,形成二進(jìn)制編碼傳送到計算機。CMOS主要適用于20~320 kV射線能量,80/μm的空間分辨率,無幾何放大情況下檢測分辨率為6 lp/mm,檢測圖像達(dá)到4096級灰度。

          圖1 CMOS射線掃描探測器

          2 CMOS探測器的檢測應(yīng)用


          2.1 檢測流程
          由于CMOS射線探測單元排成線陣列,靜止?fàn)顟B(tài)下只能得到射線透過被檢物體而形成的投影圖像中的一條線。為獲取被檢測物體的圖像,需要進(jìn)行相對掃描運動,逐線采集并拼成完整的投影圖像。獲取檢測圖像時要求射線能量波動盡可能小且可長時間連續(xù)工作,因此筆者采用恒壓式射線源(YX―LON MG325,最大電壓320 kV,大焦點3.0 mm,小焦點2.O mm)。采用CMOS線性X射線掃描探測器進(jìn)行射線檢測的流程為:探測器配置及校準(zhǔn)一確定透照方式,調(diào)節(jié)位置參數(shù)一相對運動,獲取掃描圖像一圖像處理,缺陷分析。

          2.2 檢測工裝
          探測器的成像單元(線陣列)需要與射線束中心線良好匹配,不能出現(xiàn)相對位置傾斜和偏移等現(xiàn)象。因此,需合適的成像工裝,以完成探測器的固定、位置調(diào)節(jié)及實現(xiàn)與檢測工件的相對運動。工裝要能方便地移入移出(筒形工件),應(yīng)具有一定的靈活性和較大的適應(yīng)性(檢測不同類型工件)。
          本著簡便、實用的原則,在已有射線實時成像系統(tǒng)基礎(chǔ)上進(jìn)行檢測工裝設(shè)計,即檢測時將檢測工件放在載物臺上,可實現(xiàn)左右平移、繞垂直軸旋轉(zhuǎn)等運動;探測器通過工裝固定于射線實時成像系統(tǒng)增強器運動軸上,可實現(xiàn)垂直升降和前后平動。另外,探測器還可實現(xiàn)一定角度的旋轉(zhuǎn)調(diào)節(jié)。通過與實時成像檢測系統(tǒng)的有機結(jié)合,可實現(xiàn)多種類型工件的射線檢測。此外,應(yīng)用時對于工件還要設(shè)計固定定位工裝。

          2.3 探測器配置與校準(zhǔn)
          首次使用探測器時需指定成像器類型參數(shù)(長度和可承受電壓等),以便確定出可用的最小積分時間。在探測器正常工作前,必須對其進(jìn)行配置與校準(zhǔn),以便在一定的成像條件下,使所有探測單元的偏置輸出及增益輸出達(dá)到一致。
          對于新的檢測對象,首先配置好采集圖像相關(guān)的參數(shù)(積分時間、掃描精度以及是否迭加平均),然后開始進(jìn)行探測器校準(zhǔn)。校準(zhǔn)時還要考慮焦距及物距的影響。一般校準(zhǔn)時需進(jìn)行三個步驟:①關(guān)閉射線源,探測器進(jìn)行偏置校準(zhǔn)。②開啟射線源,調(diào)節(jié)到檢測需使用的電流電壓值,使探測器的線陣列輸出信號達(dá)到最大但未出現(xiàn)飽和為止。③調(diào)節(jié)射線能量,使線陣列輸出信號降低為最大信號的一半。校準(zhǔn)的結(jié)果以文件形式存儲,可供以后的檢測調(diào)用。但調(diào)用后若再更改其中的校準(zhǔn)參數(shù),則需重新校準(zhǔn)后才能進(jìn)行檢測。
          對于大多數(shù)檢測對象,在實際檢測時應(yīng)用的電流、電壓值較高,在進(jìn)行探測器校準(zhǔn)時輸出信號早已飽和。為解決這一問題,根據(jù)不同厚度的檢測情況,設(shè)計了相應(yīng)的校準(zhǔn)用檢測試板。試板厚度均勻,在校準(zhǔn)第一步完成后將試板放在射線源窗口,然后開啟射線進(jìn)行下一步校準(zhǔn)操作。

          2.4 透照方式選取
          (1)平動方式適用于平板焊縫類工件的射線檢測,檢測時保持探測器與射線源位置相對固定,將工件放在載物臺上,以合適的速度沿X軸平行移動。對于管、筒上的環(huán)形焊縫,如果采用平動方式成像,采集的將是橢圓形透視圖像,只有中心區(qū)域的圖像才可用于檢測結(jié)果評定,并且需要旋轉(zhuǎn)多個角度才能完成全部檢測,降低了檢測靈敏度(圖2a),某些情況下由于厚度太大而不能實現(xiàn)透照檢測。
          (2)旋轉(zhuǎn)方式要求調(diào)節(jié)相對位置使工件放在載物臺回轉(zhuǎn)中心,且與射線束中心、探測器中心處于一條直線上。對于筒形件,通過工裝將探測器置于工件內(nèi)部,盡可能貼近檢測部位,采用單壁單影的方式透照;對于內(nèi)徑較小的管狀與筒形工件,采用雙壁透照的方式;旋轉(zhuǎn)一定角度即可將透照區(qū)展開成像,可有效提高檢測效率(圖2b)。對于回轉(zhuǎn)類工件,采用旋轉(zhuǎn)方式成像具有突出的優(yōu)點,可提高圖像質(zhì)量,縮短檢測時問。

          2.5 運動速度控制
          由于探測器必須有相對運動才能成像,因此需要將運動速度控制在合理的范圍。如果速度不合適,則得到的圖像就存在拉伸或壓縮現(xiàn)象。另外,分辨率越高、圖像噪聲越低,運動速度需越低。

          (a)平動方式

          (b)旋轉(zhuǎn)方式

          圖2 不同透照方式獲取的檢測圖像


          上一頁 1 2 下一頁

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉