基于門控時鐘的低功耗電路實(shí)現(xiàn)方案
摘 要:研究了門控時鐘技術(shù)在130 nm工藝、基于高閾值標(biāo)準(zhǔn)單元庫下的低功耗物理實(shí)現(xiàn)方法。詳細(xì)闡述了多級門控時鐘技術(shù)的作用機(jī)制和參數(shù)的設(shè)置方法,給出了基于門控時鐘的后端實(shí)現(xiàn)流程,著重分析了插入門控時鐘對時鐘偏移的影響并提出解決方案。在中芯國際130 nm工藝下用synop sys公司的DC, IC Comp iler, PT,VCS等工具完成物理實(shí)現(xiàn)。在10 M時鐘下,總功耗降低22. 6 % ,面積也有所減小。
本文引用地址:http://cafeforensic.com/article/162445.htm集成電路工藝節(jié)點(diǎn)的提升帶來了芯片集成度的極大提高,同時也導(dǎo)致了功耗的急速增加。另外,市場對電子設(shè)備的大量需求使得系統(tǒng)功耗成為系統(tǒng)性能的一個重要指標(biāo),功耗的高低成了芯片廠商競爭力的焦點(diǎn)之一,功耗控制與管理已成為絕大多數(shù)芯片廠商首要考慮的問題。SoC設(shè)計(jì)的功耗包含兩部分:靜態(tài)功耗和動態(tài)功耗。靜態(tài)功耗主要由泄漏電流引起,在130 nm工藝下,靜態(tài)功耗相對較小,可以忽略不計(jì)。動態(tài)功耗主要包括短路功耗和翻轉(zhuǎn)功耗,是本設(shè)計(jì)*耗的主要組成部分。短路功耗即內(nèi)部功耗,指由器件內(nèi)部由于P管和N管在某一瞬間同時導(dǎo)通引起的瞬時短路引起。翻轉(zhuǎn)功耗由CMOS器件的輸出端負(fù)載電容充放電引起。芯片工作時,很大一部分功耗是由于時鐘網(wǎng)絡(luò)的翻轉(zhuǎn)消耗的,如果時鐘網(wǎng)絡(luò)較大,這部分引起的功耗損失會很大。在眾多低功耗技術(shù)中,門控時鐘對翻轉(zhuǎn)功耗和內(nèi)部功耗的抑制作用最強(qiáng)。本文主要講述門控時鐘技術(shù)的具體實(shí)現(xiàn)。另外,基于高閾值單元具有較低的功耗,設(shè)計(jì)采用高閾值單元庫。
1 門控時鐘技術(shù)的基本原理
對于一個設(shè)計(jì)中的寄存器組,經(jīng)DC編譯后一般會生成如圖1所示的電路。由圖1可以看出,當(dāng)EN為1時, DATA_ IN的值由多路開關(guān)傳至寄存器組的數(shù)據(jù)輸入端,當(dāng)CLK上升沿來臨時,傳至DATA_OUT。當(dāng)EN為0時, OUTPUT保持不變。但由于時鐘信號CLK的翻轉(zhuǎn),寄存器組會持續(xù)在CLK的上升沿來臨時讀取數(shù)據(jù)輸入端的數(shù)據(jù),而這時讀取的數(shù)據(jù)是不變的,這就消耗了額外的功耗。
圖1 帶有多路開關(guān)的同步使能寄存器
為保證此時寄存器組不受時鐘翻轉(zhuǎn)的影響,可在EN信號為0時關(guān)斷寄存器組的時鐘輸入端,使其不受CLK端的變化而變化,這一操作可通過門控時鐘技術(shù)來實(shí)現(xiàn),如圖2所示。圖中的門控單元由一個Latch和一個與門組成。門控單元也可以采用非latch結(jié)構(gòu),直接由與門或或門組成。但由于這種電路會引發(fā)毛刺,故此處采用基于Latch的門控單元電路。插入門控時鐘后,當(dāng)EN為1時, Latch單元在時鐘低電平時將EN鎖存至ENL,時鐘上升沿來臨時, ENCLK隨CLK變化,寄存器組執(zhí)行正常的讀入讀出操作。當(dāng)EN為0時,寄存器時鐘輸入端ENCL保持為0,不隨源時鐘CLK的翻轉(zhuǎn)而變化,故此時寄存器組不消耗額外功率。
由此可見,插入門控時鐘能消除寄存器組冗余翻轉(zhuǎn)引發(fā)的內(nèi)部功耗,同時由于多路選擇器組被一個基于latch的門控單元代替,所以也減小了電路的面積。
另外,為了進(jìn)一步減小設(shè)計(jì)的功耗,可采用一些特定的門控技術(shù)。目前應(yīng)用比較廣泛的有多級門控時鐘,層次化門控時鐘等。在多級門控時鐘技術(shù)中,一個門控單元還可用來驅(qū)動其他一個或一組門控單元。這樣就通過分級控制減少了門控單元的數(shù)目,而且這種方法可組合盡可能多的寄存器組使得門控單元向頂層靠近,節(jié)省更多功耗。
圖2 基于latch的門控單元電路
DIY機(jī)械鍵盤相關(guān)社區(qū):機(jī)械鍵盤DIY
評論