有源電力濾波器在大功率變頻器供電電網中的應用
0 引言
近年來,由于變頻調速和節(jié)能的需要,變頻器已經廣泛應用于電力、機械、工業(yè)、生活等各個領域。由于變頻器中要進行大功率二極管整流、大功率IGBT逆變,結果是在輸入輸出電路產生電流高次諧波,干擾供電系統(tǒng)、負載及其它鄰近電氣設備。隨著大功率變頻器的大量使用,其產生的諧波污染問題也日益嚴重。
1 變頻器諧波的產生機理及危害
要探討變頻器的諧波產生機理,首先要了解變頻器的工作原理,從結構上,變頻器有間接變頻器和直接變頻器之分。間接變頻器將工頻電流通過整流器變成直流,然后再經過逆變器將直流變換成可控頻率的交流。而直接變頻器是將工頻電流直接變換成可控頻率的交流,沒有中間的直流環(huán)節(jié)。直接變頻器的每相都是一個兩組晶閘管整流裝置反并聯的可逆電路。正反兩組按一定周期相互切換,在負荷上就獲得了交變輸出的電壓Uo,Uo 的幅值決定于各整流裝置的整流相數和移相角。
目前應用較多的還是間接變頻器。間接變頻器有3 種不同的結構方式:
(1)用可控整流器變壓,用逆變器變頻,調壓和調頻分別是在兩個環(huán)節(jié)上進行,兩者要在控制電路上協(xié)調配合;
(2)用不控整流器整流斬波器變壓,用逆變器變頻,這種變頻器整流環(huán)節(jié)用斬波器,用脈寬調壓;
(3)用不控整流器整流,用PWM逆變器變頻,這種變頻器采用可控關斷的全控型器件(如IGBT等),輸出波形才會非常逼近正弦波。通常變頻器的主電路都選用圖1 所示交-直-交形式,它包括整流AC/DC 輸入和逆變DC/AC 輸出兩部分。
1.1 輸入部分
在三相橋式整流電路中,由非線性二極管組成的三相橋式整流橋及其二極管參數的離散會引起電壓主波形為正弦波,而電流波形為矩形波,波形可以按傅立葉級數分解為基波和各次諧波,通常含有5次、7 次、11 次、13 次等高次諧波。
1.2 輸出部分
大部分變頻器采用PWM 或SPWM 調制的交直流變頻方式,線電壓是正弦脈寬、幅值相等的窄矩形波,其等效后是連續(xù)的矩形波,而三相的相電壓是階梯波,因此,電壓是非線性的,電流接近正
弦但也含有豐富的諧波。輸出表達式為
式中:uo為變頻器輸出電壓;
ud為變頻器直流側電壓;
琢為調制度(0臆琢臆1);
棕r 為調制信號角頻率;
漬為正弦調制波的初相角;
棕r為載波信號角頻率;
n 為變頻器輸出諧波次數。
式(1)中第一項為輸出波形中的基波分量,即調制時所要求的正弦波;第二項是輸出波形中的諧波分量。
變頻器的電源系統(tǒng)和電力設備輸出的高壓母線相連接,在這條線路上同時還存在著電容器、發(fā)電機、變壓器、電動機等負載,變頻器產生的高次諧波電流將按各自的阻抗分流到電源系統(tǒng)和并聯的負載上,對相關電氣設備造成不同程度的影響。
2 諧波的治理
變頻器給人們帶來極大的方便、高效率和巨大的經濟效益的同時,對電網注入了大量的諧波,使供電質量不斷惡化。另一方面,隨著以計算機為代表的大量敏感設備的普及應用,人們對公用電網的供電質量要求越來越高。目前諧波與電磁干擾、功率因數降低已并列為電力系統(tǒng)的三大公害。
因而消除變頻器產生的高次諧波對改善供電質量和確保電力系統(tǒng)安全、穩(wěn)定、經濟運行有著非常積極的意義。
要對變頻器產生的諧波電流進行補償或抑制,通常有兩種方案:
(1)裝設補償裝置;
(2)對接入電網的變頻器進行改造以符合相關規(guī)定。
對已有的變頻器進行改造,成本較高,而采用補償裝置進行補償則更為合理。裝設諧波補償裝置的傳統(tǒng)方法就是采用LC
調協(xié)濾波器。這種方法既可補償諧波,又可補償無功功率,而且結構簡單,一直被廣泛使用。但是,也存在明顯的缺點,就是補償特性受電網阻抗和運行狀態(tài)影響,容易和系統(tǒng)發(fā)生并聯諧振,導致諧波放大,使LC濾波器過載甚至燒毀。此外,它只能補
償固定頻率的諧波,補償效果也不理想。有源電力濾波器是一種用于快速動態(tài)抑制諧波、補償無功的新型電力電子裝置,它能對大小和頻率都變化的諧波以及變化的無功進行補償,其應用可克服無源濾波器等傳統(tǒng)的諧波抑制和無功功率補償方法的缺點,獲得比無源濾波器更好的補償特性,是一種理想的補償諧波裝置。有源電力濾波器的系統(tǒng)結構如圖2 所示,主要有指令電流運算電路、電流跟蹤控制電路、驅動電路和主電路四個部分組成。
畸變率高于62豫,5 次電流電流達到48.4A;變壓器低壓出線畸變也達15%,非常有必要進行諧波治理。
在上述測試的兩個諧波測
評論