采用噪聲消除技術(shù)的3~5 GHz CMOS超寬帶LNA設(shè)計(jì)
由于式(20)過(guò)于復(fù)雜,故用Matlab數(shù)值分析代替表達(dá)式分析。在仿真工藝和可行的電路參數(shù)的條件下,得到圖6的計(jì)算結(jié)果。如圖6所示, Rout, ni在高頻段的幅值較低,而且隨著L4 的增加Rout, ni的幅值逐漸減小。因此增加L4 可以改善LNA的高頻噪聲性能。兼顧噪聲抵消和輸出匹配的要求,通過(guò)仿真,選取L4 =616 nH, Rf = 1 kΩ, Cf = 0. 9 pF,M3 = 45μm /0. 18μm,M4 =90μm /0. 18μm。
圖6 Rout, ni的Matlab仿真結(jié)果
3 仿真結(jié)果
對(duì)于本文設(shè)計(jì)的3 - 5 GHz超寬帶低噪聲放大器,采用SM IC 0. 18 - μm RF CMOS 工藝, 使用ADS2008進(jìn)行仿真,電源電壓為1. 8 V,核心電路和輸出緩沖級(jí)分別消耗電流9 mA和2. 4 mA,電路總功耗約為20. 5 mW。如圖8所示,電路輸入輸出匹配良好,反向隔離度合格。圖7 中,“方格”標(biāo)識(shí)的曲線為L(zhǎng)3 = 0時(shí)的S21 ,“圓圈”標(biāo)識(shí)的曲線為L(zhǎng)4 =115 nH時(shí)的噪聲系數(shù)。可見(jiàn), L3 有效地增加了工作頻段內(nèi)的增益,同時(shí)補(bǔ)償了高頻增益損失,使最大增益從15 dB提升至18 dB,這與本文式(12) 、式(13)和式(14)的分析是一致的。對(duì)比兩條噪聲系數(shù)曲線知,在3. 5 - 5 GHz頻段內(nèi),噪聲消除技術(shù)均提供了不同程度的噪聲優(yōu)化,最大噪聲系數(shù)從大于3 dB下降至2. 84 dB,這與本文對(duì)圖6的分析是一致的。
如圖9所示,電路在4. 5 GHz取得- 12. 9 dBm 的IIP3。表1是超寬帶LNA性能參數(shù)匯總及對(duì)比。
表1 性能參數(shù)匯總及對(duì)比
圖7 S21和噪聲系數(shù)仿真結(jié)果
圖8 S參數(shù)仿真結(jié)果
圖9 輸入三階截?cái)帱c(diǎn)仿真結(jié)果
4 結(jié)論
本文基于SM IC 0. 18μm RF CMOS工藝,設(shè)計(jì)了可以工作于3~5 GHz頻段的超寬帶低噪聲放大器。對(duì)電路的輸入匹配和增益進(jìn)行了分析,對(duì)噪聲消除技術(shù)進(jìn)行了推導(dǎo)。仿真結(jié)果表明,該放大器在工作頻帶內(nèi)的各項(xiàng)指標(biāo)滿足超寬帶系統(tǒng)應(yīng)用。本文引用地址:http://cafeforensic.com/article/187639.htm
評(píng)論