色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > EDA/PCB > 設(shè)計應(yīng)用 > Matlab語言的Neural Network Toolbox 及其在同步中

          Matlab語言的Neural Network Toolbox 及其在同步中

          作者: 時間:2012-09-11 來源:網(wǎng)絡(luò) 收藏

          訓(xùn)練參數(shù)一般都依賴于選擇的訓(xùn)練函數(shù)。兩個重要的參數(shù):net.trainParam.epochs設(shè)置所有數(shù)據(jù)全部用于訓(xùn)練的最多次數(shù),net.trainParam.show設(shè)置訓(xùn)練函數(shù)狀態(tài)報告的時間。例如:

          3 在同步中的應(yīng)用

          在加性高斯白噪聲條件下,接收端對信號進行高速采樣,根據(jù)香農(nóng)定理,在一個模擬信號持續(xù)時間內(nèi)至少要保證4個采樣點,才能完整和準確地恢復(fù)信號的信息,由此決定了系統(tǒng)的采樣要求。軟件上主要由若干BP(Back-Propagation)前向神經(jīng)網(wǎng)絡(luò)完成,網(wǎng)絡(luò)的個數(shù)與算法精度有關(guān)。

          在搜索長度一定的條件下,根據(jù)整個搜索區(qū)間上采樣點個數(shù)確定各個神經(jīng)網(wǎng)絡(luò)的輸出節(jié)點數(shù)目。使用的網(wǎng)絡(luò)個數(shù)由捕獲精度來確定,即整個捕獲區(qū)間上劃分為N個搜索相位,則采樣N個網(wǎng)絡(luò)并行執(zhí)行。每個網(wǎng)絡(luò)都具有相同的一組輸入信號,一個輸出為0或者1。

          為體現(xiàn)神經(jīng)網(wǎng)絡(luò)對信號進行捕獲的思想,訓(xùn)練樣本為不含噪聲的高斯脈沖信號,搜索的相位區(qū)間為6個,識別的結(jié)果是6維向量,在出現(xiàn)信號相應(yīng)得區(qū)間位置上對應(yīng)的元素為1,其他元素為0,測試樣本信噪比為30dB。圖2是6個不含噪聲的訓(xùn)練樣本;圖2和圖3左邊是信噪比為30 dB的分別出現(xiàn)在6個不同區(qū)間的測試樣本,右邊是網(wǎng)絡(luò)輸出的識別結(jié)果,在向量的對應(yīng)元素上出現(xiàn)尖峰。仿真結(jié)果說明在30 dB信噪比的情況下,利用神經(jīng)網(wǎng)絡(luò)能夠準確檢測到信號的出現(xiàn)時刻。由于仿真使用的訓(xùn)練樣本比較少,神經(jīng)網(wǎng)絡(luò)沒有充分提取樣本的統(tǒng)計特性,也沒有足夠的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練過程對神經(jīng)網(wǎng)絡(luò)檢測信號能力的影響和噪聲對訓(xùn)練過程和測試過程及性能的影響。通過仿真看來,在特定情況下神經(jīng)網(wǎng)絡(luò)對信號具有一定的檢測能力。

          4 結(jié) 語

          本文在介紹神經(jīng)網(wǎng)絡(luò)工具箱的基礎(chǔ)上,結(jié)合簡單例子進一步對神經(jīng)網(wǎng)絡(luò)工具箱中的一些函數(shù)及神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)進行解釋和說明。然后利用神經(jīng)網(wǎng)絡(luò)在同步中的應(yīng)用進行了簡單的說明,并通過仿真驗證了神經(jīng)網(wǎng)絡(luò)在同步中的可行性。

          c++相關(guān)文章:c++教程



          上一頁 1 2 3 下一頁

          關(guān)鍵詞: Network Toolbox Matlab Neural

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉