儀表放大器電路原理、構(gòu)成及電路設(shè)計(jì)
一、概述:
本文引用地址:http://cafeforensic.com/article/192909.htm隨著電子技術(shù)的飛速發(fā)展,運(yùn)算放大電路也得到廣泛的應(yīng)用。儀表放大器是一種精密差分電壓放大器,它源于運(yùn)算放大器,且優(yōu)于運(yùn)算放大器。儀表放大器把關(guān)鍵元件集成在放大器內(nèi)部,其獨(dú)特的結(jié)構(gòu)使它具有高共模抑制比、高輸入阻抗、低噪聲、低線性誤差、低失調(diào)漂移增益設(shè)置靈活和使用方便等特點(diǎn),使其在數(shù)據(jù)采集、傳感器信號(hào)放大、高速信號(hào)調(diào)節(jié)、醫(yī)療儀器和高檔音響設(shè)備等方面倍受青睞。儀表放大器是一種具有差分輸入和相對(duì)參考端單端輸出的閉環(huán)增益組件,具有差分輸出和相對(duì)參考端的單端輸出。與運(yùn)算放大器不同之處是運(yùn)算放大器的閉環(huán)增益是由反相輸入端與輸出端之間連接的外部電阻決定,而儀表放大器則使用與輸入端隔離的內(nèi)部反饋電阻網(wǎng)絡(luò)。儀表放大器的 2 個(gè)差分輸入端施加輸入信號(hào),其增益即可由內(nèi)部預(yù)置,也可由用戶通過(guò)引腳內(nèi)部設(shè)置或者通過(guò)與輸入信號(hào)隔離的外部增益電阻預(yù)置。
二、儀表放大器電路的構(gòu)成及原理
儀表放大器電路的典型結(jié)構(gòu)如圖1所示。它主要由兩級(jí)差分放大器電路構(gòu)成。其中,運(yùn)放A1,A2為同相差分輸入方式,同相輸入可以大幅度提高電路的輸入阻抗,減小電路對(duì)微弱輸入信號(hào)的衰減;差分輸入可以使電路只對(duì)差模信號(hào)放大,而對(duì)共模輸入信號(hào)只起跟隨作用,使得送到后級(jí)的差模信號(hào)與共模信號(hào)的幅值之比 (即共模抑制比CMRR)得到提高。這樣在以運(yùn)放A3為核心部件組成的差分放大電路中,在CMRR要求不變情況下,可明顯降低對(duì)電阻R3和R4,Rf和R5的精度匹配要求,從而使儀表放大器電路比簡(jiǎn)單的差分放大電路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的條件下,圖1電路的增益為:G=(1+2R1/Rg)(Rf/R3)。由公式可見(jiàn),電路增益的調(diào)節(jié)可以通過(guò)改變 Rg阻值實(shí)現(xiàn)。
三、儀表放大器電路設(shè)計(jì)及應(yīng)用
目前,儀表放大器電路的實(shí)現(xiàn)方法主要分為兩大類:第一類由分立元件組合而成;另一類由單片集成芯片直接實(shí)現(xiàn)。根據(jù)現(xiàn)有元器件,分別以單運(yùn)放LM741和OP07,集成四運(yùn)放LM324和單片集成芯片AD620為核心,設(shè)計(jì)出四種儀表放大器電路方案。
方案1 由3個(gè)通用型運(yùn)放LM741組成三運(yùn)放儀表放大器電路形式,輔以相關(guān)的電阻外圍電路,加上A1,A2同相輸入端的橋式信號(hào)輸入電路,如圖2所示。
圖2中的A1~A3分別用LM741替換即可。電路的工作原理與典型儀表放大器電路完全相同。
方案2 由3個(gè)精密運(yùn)放OP07組成,電路結(jié)構(gòu)與原理和圖2相同(用3個(gè)OP07分別代替圖2中的A1~A3)。
方案3 以一個(gè)四運(yùn)放集成電路LM324為核心實(shí)現(xiàn),如圖3所示。它的特點(diǎn)是將4個(gè)功能獨(dú)立的運(yùn)放集成在同一個(gè)集成芯片里,這樣可以大大減少各運(yùn)放由于制造工藝不同帶來(lái)的器件性能差異;采用統(tǒng)一的電源,有利于電源噪聲的降低和電路性能指標(biāo)的提高,且電路的基本工作原理不變。
方案4 由一個(gè)單片集成芯片AD620實(shí)現(xiàn),如圖4所示。它的特點(diǎn)是電路結(jié)構(gòu)簡(jiǎn)單:一個(gè)AD620,一個(gè)增益設(shè)置電阻Rg,外加工作電源就可以使電路工作,因此設(shè)計(jì)效率最高。圖4中電路增益計(jì)算公式為:G=49.4K/Rg+1。 實(shí)現(xiàn)儀表放大器電路的四種方案中,都采用4個(gè)電阻組成電橋電路的形式,將雙端差分輸入變?yōu)閱味说男盘?hào)源輸入。性能測(cè)試主要是從信號(hào)源Vs的最大輸入和Vs最小輸入、電路的最大增益及共模抑制比幾方面進(jìn)行仿真和實(shí)際電路性能測(cè)試。測(cè)試數(shù)據(jù)分別見(jiàn)表1和表2。其中,Vs最大(小)輸入是指在給定測(cè)試條件下,使電路輸出不失真時(shí)的信號(hào)源最大(小)輸入;最大增益是指在給定測(cè)試條件下,使輸出不失真時(shí)可以實(shí)現(xiàn)的電路最大增益值。共模抑制比由公式KCMRR=20|g | AVd/AVC|(dB)計(jì)算得出。
說(shuō)明:(1)f為Vs輸入信號(hào)的頻率;
(2)表格中的電壓測(cè)量數(shù)據(jù)全部以峰峰值表示;
(3)由于仿真器件原因,實(shí)驗(yàn)中用Multisim對(duì)方案3的仿真失效,表1中用“-”表示失效數(shù)據(jù);
(4)表格中的方案1~4依次分別表示以LM741,OP07,LM324和AD620為核心組成的儀表放大器電路。
由表1和表2可見(jiàn),仿真性能明顯優(yōu)于實(shí)際測(cè)試性能。這是因?yàn)榉抡骐娐返男阅芑旧鲜怯煞抡嫫骷男阅芎碗娐返慕Y(jié)構(gòu)形式確定的,沒(méi)有外界干擾因素,為理想條件下的測(cè)試;而實(shí)際測(cè)試電路由于受環(huán)境干擾因素(如環(huán)境溫度、空間電磁干擾等)、人為操作因素、實(shí)際測(cè)試儀器精確度、準(zhǔn)確度和量程范圍等的限制,使測(cè)試條件不夠理想,測(cè)量結(jié)果具有一定的誤差。在實(shí)際電路設(shè)計(jì)過(guò)程中,仿真與實(shí)際測(cè)試各有所長(zhǎng)。一般先通過(guò)仿真測(cè)試,初步確定電路的結(jié)構(gòu)及器件參數(shù),再通過(guò)實(shí)際電路測(cè)試,改進(jìn)其具體性能指標(biāo)及參數(shù)設(shè)置。這樣,在保證電路功能、性能的前提下,大大提高電路設(shè)計(jì)的效率。
由表2的實(shí)測(cè)數(shù)據(jù)可以看出:方案2在信號(hào)輸入范圍(即Vs的最大、最小輸入)、電路增益、共模抑制比等方面的性能表現(xiàn)為最優(yōu)。在價(jià)格方面,它比方案1和方案3的成本高一點(diǎn),但比方案4便宜很多。因此,在四種方案中,方案2的性價(jià)比最高。方案4除最大增益相對(duì)小點(diǎn),其他性能僅次于方案2,具有電路簡(jiǎn)單,性能優(yōu)越,節(jié)省設(shè)計(jì)空間等優(yōu)點(diǎn)。成本高是方案4的最大缺點(diǎn)。方案1和方案3在性能上的差異不大,方案3略優(yōu)于方案1,且它們同時(shí)具有絕對(duì)的價(jià)格優(yōu)勢(shì),但性能上不如方案2和方案4好。
綜合以上分析,方案2和方案4適用于對(duì)儀表放大器電路有較高性能要求的場(chǎng)合,方案2性價(jià)比最高,方案4簡(jiǎn)單、高效,但成本高。方案1和方案3適用于性能要求不高且需要節(jié)約成本的場(chǎng)合。針對(duì)具體的電路設(shè)計(jì)要求,選取不同的方案,以達(dá)到最優(yōu)的資源利用。電路的設(shè)計(jì)方案確定以后,在具體的電路設(shè)計(jì)過(guò)程中,要注意以下幾個(gè)方面:
電路相關(guān)文章:電路分析基礎(chǔ)
網(wǎng)線測(cè)試儀相關(guān)文章:網(wǎng)線測(cè)試儀原理
評(píng)論