基于EPA的光柵位移測量系統(tǒng)
目前,國內(nèi)研究和開發(fā)數(shù)控定位裝置的單位都在研制各種經(jīng)濟(jì)型的工作臺產(chǎn)品,一般定位精度為1 μm、5 μm、10 μm。工作臺的結(jié)構(gòu)布局、位移量的大小、測量速度等都越來越趨于靈活,自動化程度也越來越高,但是這些工作臺大多數(shù)都是單機(jī)監(jiān)控的分散結(jié)構(gòu),有些是通過RS485、現(xiàn)場總線、PLC等把設(shè)備連接在一起,構(gòu)成簡單的DCS或FCS網(wǎng)絡(luò)測量系統(tǒng)。利用這些方法構(gòu)成的系統(tǒng)具有成本高、測量范圍小、速度低、不穩(wěn)定和支持應(yīng)用有限等缺陷,因而其發(fā)展受到了極大的限制。相反,工業(yè)以太網(wǎng)以其統(tǒng)一的TCP/IP協(xié)議和CSMA/CD多路訪問方式使其得到了迅猛發(fā)展,以太網(wǎng)不僅具有廉價(jià)、高速、簡易、方便的特性,而且傳輸速率高、信息量大、兼容性強(qiáng),所以受到許多工業(yè)監(jiān)控現(xiàn)場總線開發(fā)機(jī)構(gòu)的高度重視。
本文介紹的基于EPA的光柵位移測量系統(tǒng),具有功能易于拓展、聯(lián)網(wǎng)方便、造價(jià)低廉的特點(diǎn),可很好地滿足航空航天、精密機(jī)械儀器、數(shù)控機(jī)床等領(lǐng)域中精密位移測量及定位的需要。
1 光柵位移測量系統(tǒng)硬件選型
1.1 主控制器DS80C410微處理器
DS80C410是快速的與8051兼容的高度集成的網(wǎng)絡(luò)微控制器。它執(zhí)行指令的速度比普通的8051快3倍。它的外圍設(shè)備包括10/100 Mbps的以太網(wǎng)MAC,2個(gè)串行端口,1個(gè)CAN2.0控制器,1個(gè)l-wrie控制器和64個(gè)I/O引腳。為了能訪問網(wǎng)絡(luò),ROM里嵌入了完全的TCPIPv4/6協(xié)議棧和操作系統(tǒng)。網(wǎng)絡(luò)協(xié)議棧同時(shí)支持32個(gè)TCP連接而且可以通過以太網(wǎng)MAC以5 Mbps的速率傳輸數(shù)據(jù)。
對于半雙工操作模式,DS80C410和網(wǎng)絡(luò)上其他節(jié)點(diǎn)一起共享以太網(wǎng)物理介質(zhì)。DS80C410訪問物理介質(zhì)時(shí)遵守以太網(wǎng)的帶沖突檢測的載波偵聽多路訪問協(xié)議(CS-MA/CD)。MAC在試圖發(fā)送以前等待物理載體空閑。由于網(wǎng)絡(luò)中有很多節(jié)點(diǎn),所以在發(fā)送時(shí)不同的節(jié)點(diǎn)可能發(fā)生沖突。當(dāng)檢測到?jīng)_突時(shí),MAC在嘗試再次發(fā)送前等待一個(gè)隨機(jī)時(shí)隙。除非有指令干涉,否則MAC再嘗試發(fā)送這個(gè)沖突幀,發(fā)送16次以后自動放棄這個(gè)發(fā)送幀。對于全雙工通信模式,物理介質(zhì)和DS80C410直接連接到另外一個(gè)節(jié)點(diǎn)上,允許同時(shí)發(fā)送和接收數(shù)據(jù),而不會發(fā)生沖突,因此不需要介質(zhì)訪問方法。對于全雙工通信,流控制機(jī)制使用PAUSE控制幀。當(dāng)需要時(shí)間釋放接收數(shù)據(jù)緩沖區(qū)時(shí),DS80C410可以初始化PSUSE幀,請求其他的嘗試發(fā)送幀的節(jié)點(diǎn)掛起幾個(gè)時(shí)隙。
和其他單片機(jī)相比,DS80C410的指令操作功能強(qiáng)大,不需要外擴(kuò)存儲器。內(nèi)部集成的2個(gè)串口,便于整個(gè)系統(tǒng)的功能升級和擴(kuò)展。除了組建工業(yè)以太網(wǎng)接口電路所用到的端口外,還有大量的閑置端口可以用來實(shí)現(xiàn)其他用途,同時(shí)系統(tǒng)能夠?qū)崿F(xiàn)在工業(yè)現(xiàn)場以10/100 Mbps的網(wǎng)絡(luò)傳輸速度進(jìn)行實(shí)時(shí)通信,便于系統(tǒng)實(shí)現(xiàn)網(wǎng)絡(luò)化測試。另外,它執(zhí)行指令的速度比普通的8051快3倍,所以有利于提高系統(tǒng)的響應(yīng)時(shí)間。綜合考慮之后,選擇DS80C410作為整個(gè)光柵位移測量系統(tǒng)的主控制器。
1.2 以太網(wǎng)收發(fā)芯片LXT972ALC
本設(shè)計(jì)中需要一個(gè)傳輸介質(zhì)為雙絞線的以太網(wǎng)接口,這里采用的Intel公司的LXT972ALC就是這樣一個(gè)接收發(fā)送芯片。它遵守快速以太網(wǎng)協(xié)議,支持10/100 MbpsMAC標(biāo)準(zhǔn)。LXT972ALC設(shè)備實(shí)現(xiàn)了標(biāo)準(zhǔn)IEEE802.3定義的MII。提供了從MAC到LXT972ALC數(shù)據(jù)傳輸?shù)莫?dú)立通道。每一個(gè)通道都有各自的時(shí)鐘、數(shù)據(jù)總線和控制信號。
1.3 網(wǎng)絡(luò)變壓器
以太網(wǎng)收發(fā)芯片LXT972ALC輸出數(shù)據(jù)還要通過網(wǎng)絡(luò)隔離變壓器實(shí)現(xiàn)對信號的處理,網(wǎng)絡(luò)隔離變壓器的作用就是把信號轉(zhuǎn)換成平衡信號傳輸,以減少共模干擾,提高數(shù)據(jù)傳輸距離。設(shè)計(jì)中采用了Belfuse的S558-5999-T7網(wǎng)絡(luò)隔離變壓器。變壓器的兩個(gè)輸入和兩個(gè)輸出分別連接以太網(wǎng)收發(fā)芯片LXT972ALC的TPIP/N、TPOP/N和RJ45。
2 傳感器
傳感器的類型是多種多樣的,其優(yōu)缺點(diǎn)也各有側(cè)重。相比較而言,光柵傳感器不僅具有高速、高精度、非接觸測量等優(yōu)點(diǎn),而且位移檢測有較大的放大率以及誤差平均效應(yīng),所以廣泛應(yīng)用于位移精密測量和精密定位控制領(lǐng)域。
2.1 光柵位移測量的基本原理
光柵傳感器主要是由標(biāo)尺光柵、指示光柵和光電器件(發(fā)光和光敏器件)組成,當(dāng)兩塊光柵以微小夾角重疊時(shí)會產(chǎn)生干涉,在與光柵刻線大致垂直的方向上形成亮暗相間的干涉條紋,即所謂莫爾條紋。隨著兩光柵的相對移動,條紋也發(fā)生移動,在固定的光敏器件上就會有光的亮暗變化,對亮暗變化周期進(jìn)行計(jì)數(shù),按照一定的對應(yīng)關(guān)系即可計(jì)算出兩光柵的相對位移,這就是光柵測量位移的基本原理。一般,莫爾條紋的寬度遠(yuǎn)大于光柵柵格的寬度,因而,莫爾條紋實(shí)際上起到了光學(xué)放大作用。其放大倍數(shù)為
其中T為莫爾條紋的間距,d為光柵的柵格寬度,θ為兩光柵刻線夾角(單位為弧度)。光柵的柵格寬度是直接影響測量分辨率和精度的重要因素。對于不同的光柵尺,其測量的分辨率、精度以及量程都不一樣。光柵傳感器的柵距通常為0.02 mm(50線對/mm)、0.04 mm(25線對,/mm)。輸出信號有相位角差90°的兩路方波信號和相位角依次差90°的四路正弦信號。由于方波信號為數(shù)字量,不需要A/D轉(zhuǎn)換,DS80C410就可以直接進(jìn)行處理,所以本文重點(diǎn)討論方波輸入信號,而對于正弦波信號,經(jīng)過整形可變?yōu)榉讲ㄐ盘栞敵觥?br /> 本文采用高閾值邏輯(HTL)信號輸出的SGC-4.2光柵尺作為位移測量元件。這種光柵尺的特點(diǎn)是閾值電壓比較高,因此它的噪聲容限比較大,有較強(qiáng)的抗干擾能力。它的主要缺點(diǎn)是工作速度比較低,所以多用在對工作速度要求不高而對抗干擾能力要求較高的一些工業(yè)控制設(shè)備中。
2.2 四倍頻電路設(shè)計(jì)原理
在實(shí)際應(yīng)用中,光柵傳感器輸出兩路相位相差為90°的方波信號A和B。如圖1所示,用A、B兩相信號的脈沖數(shù)表示光柵走過的位移量,標(biāo)志光柵分正向與反向移動。四倍頻后的信號經(jīng)計(jì)數(shù)器計(jì)數(shù)后轉(zhuǎn)化為相對位置。實(shí)現(xiàn)計(jì)數(shù)過程一般有兩種方法:一是由微處理器內(nèi)部定時(shí)計(jì)數(shù)器實(shí)現(xiàn);二是由可逆計(jì)數(shù)器實(shí)現(xiàn)對正反向脈沖的計(jì)數(shù)。
光柵信號A、B有以下關(guān)系:
①當(dāng)光柵正向移動時(shí),光柵輸出的A相信號的相位超前B相90°,則在一個(gè)周期內(nèi),兩相信號共有4次相對變化:00-10-11-01-00。這樣:每發(fā)生1次變化,可逆計(jì)數(shù)器便實(shí)現(xiàn)1次加計(jì)數(shù),1個(gè)周期內(nèi)共可實(shí)現(xiàn)4次加計(jì)數(shù),從而實(shí)現(xiàn)正轉(zhuǎn)狀態(tài)的四倍頻計(jì)數(shù)。
②當(dāng)光柵反向移動時(shí),光柵輸出的A相信號的相位滯后于B相信號90°,則一個(gè)周期內(nèi)兩相信號也有4次相對變化:00-01-11-10-00。同理,如果每發(fā)生1次變化,可逆計(jì)數(shù)器便實(shí)現(xiàn)1次減計(jì)數(shù),在1個(gè)周期內(nèi),共可實(shí)現(xiàn)4次減計(jì)數(shù),就實(shí)現(xiàn)了反轉(zhuǎn)狀態(tài)的四倍頻計(jì)數(shù)。
③當(dāng)線路受到干擾或出現(xiàn)故障時(shí),可能出現(xiàn)其他狀態(tài)轉(zhuǎn)換,此時(shí)計(jì)數(shù)器不進(jìn)行計(jì)數(shù)操作。
綜合上述分析,可以做出處理模塊狀態(tài)轉(zhuǎn)換圖,如圖2所示。其中“+”、“-”分別表示計(jì)數(shù)器加/減1,“0”表示計(jì)數(shù)器不動作。
3 光柵位移測量系統(tǒng)的總體設(shè)計(jì)
光柵位移測量系統(tǒng)的結(jié)構(gòu)框圖如圖3所示。系統(tǒng)工作時(shí),SGC-4.2光柵尺將位置信號先轉(zhuǎn)化成HTL電壓信號輸出,經(jīng)過調(diào)理電路濾波和整流后,處理成標(biāo)準(zhǔn)的方波信號。然后控制器DS80C410通過內(nèi)部高速計(jì)數(shù)器對外部的方波信號進(jìn)行計(jì)數(shù)運(yùn)算。一方面向伺服驅(qū)動器發(fā)布電機(jī)動作指令,控制電機(jī)驅(qū)動位移執(zhí)行機(jī)構(gòu)運(yùn)動;另一方面通過以太網(wǎng)收發(fā)芯片XT972ALC進(jìn)行讀寫操作,將工業(yè)現(xiàn)場的測量信息上傳到工業(yè)以太網(wǎng)絡(luò)上,便于管理者進(jìn)行全局決策。
4 光柵位移測量系統(tǒng)的硬件設(shè)計(jì)
光柵位移測量系統(tǒng)的硬件實(shí)現(xiàn)主要包括位移檢測電路、電源電路、人機(jī)接口和聲光報(bào)警電路以及工業(yè)以太網(wǎng)接口電路的設(shè)計(jì)。
4.1 基于集成芯片的光柵位移檢測電路
光柵信號檢測電路可以由光敏三極管、比較器LM339、2片74193串聯(lián)組成。但是這種設(shè)計(jì)方案往往需要增加較多的可編程計(jì)數(shù)器,電路元器件眾多、結(jié)構(gòu)復(fù)雜、功耗增加、穩(wěn)定性下降。因此,本文對經(jīng)過SGC-4.2型光柵尺(50線/mm)出來的脈沖信號進(jìn)行倍頻處理時(shí),選擇4倍頻專用集成電路芯片QA740210來實(shí)現(xiàn),對信號4細(xì)分后,可得分辨率為5μm的計(jì)數(shù)脈沖,這在工業(yè)測控中已達(dá)到了很高的精確度。QA740210集成電路可將兩路正交的方波進(jìn)行四倍頻,并能根據(jù)輸入信號的相位關(guān)系進(jìn)行相位判別,產(chǎn)生2路加、減計(jì)數(shù)信號,可直接送到DS80C410高速計(jì)數(shù)器進(jìn)行計(jì)數(shù)。
評論