高功率白光LED散熱與壽命問(wèn)題改善設(shè)計(jì)
在眾多環(huán)保光源應(yīng)用方案中,LED是相對(duì)其他光源方案更為節(jié)能、便于組裝設(shè)計(jì)的一種光源技術(shù),其中,在照明光源應(yīng)用中,高功率白光LED使用則為最頻繁的發(fā)光元器件,但白光LED雖在發(fā)光效率、單顆功率各方面表現(xiàn)均有研發(fā)進(jìn)展,實(shí)際上白光LED仍存在發(fā)光均勻性、封裝材料壽命等問(wèn)題,尤其在芯片散熱的應(yīng)用限制,則為開(kāi)發(fā)LED光源應(yīng)用首要必須改善的問(wèn)題...
本文引用地址:http://cafeforensic.com/article/200013.htm高功率白光LED應(yīng)用于日常照明用途,其實(shí)在環(huán)保光源日益受到重視后,已經(jīng)成為開(kāi)發(fā)環(huán)保光源的首要選擇。但實(shí)際上白光LED仍有許多技術(shù)上的瓶頸尚待克服,目前已有相關(guān)改善方案,用以強(qiáng)化白光LED在發(fā)光均勻性、封裝材料壽命、散熱強(qiáng)化等各方面設(shè)計(jì)瓶頸,進(jìn)行重點(diǎn)功能與效能之改善。
環(huán)保光源需求增加 高功率白光LED應(yīng)用出線
LED光源受到青睞的主因,不外乎產(chǎn)品壽命長(zhǎng)、光-電轉(zhuǎn)換效率高、材料特性可在任意平面進(jìn)行嵌裝等特性。但在發(fā)展日常照明光源方面,由于需達(dá)到實(shí)用的“照明”需求,原以指示用途的LED就無(wú)法直接對(duì)應(yīng)照明應(yīng)用,必須從芯片、封裝、載板、制作技術(shù)與外部電路各方面進(jìn)行強(qiáng)化,才能達(dá)到照明用途所需的高功率、高亮度照明效用。
就市場(chǎng)需求層面觀察,針對(duì)照明應(yīng)用市場(chǎng)開(kāi)發(fā)的白光LED,可以說(shuō)是未來(lái)用量較高的產(chǎn)品項(xiàng)目,但為達(dá)到使用效用,白光LED必須針對(duì)照明應(yīng)用進(jìn)行重點(diǎn)功能改善。其一是針對(duì)LED芯片進(jìn)行強(qiáng)化,例如,增加其光-電轉(zhuǎn)換效率,或是加大芯片面積,讓單個(gè)LED的發(fā)光量(光通量)達(dá)到其設(shè)計(jì)極限。其二,屬于較折衷的設(shè)計(jì)方案,若在持續(xù)加大單片LED芯片面積較困難的前提下,改用多片LED芯片封裝在同一個(gè)光源模組,也是可以達(dá)到接近前述方法的實(shí)用技術(shù)方案。
以多芯片封裝 滿足低成本、高亮度設(shè)計(jì)要求
就產(chǎn)業(yè)實(shí)務(wù)需求檢視,礙于量產(chǎn)彈性、設(shè)計(jì)難度與控制產(chǎn)品良率/成本問(wèn)題,LED芯片持續(xù)加大會(huì)碰到成本與良率的設(shè)計(jì)瓶頸。一昧的加大芯片面積可能會(huì)碰到的設(shè)計(jì)困難,并非技術(shù)上與生產(chǎn)技術(shù)辦不到,而是在成本與效益考量上,大面積之LED芯片成本較高,而且對(duì)于實(shí)際制造需求的變更設(shè)計(jì)彈性較低。
反而是利用多片芯片的整合封裝方式,讓多片LED小芯片在載板上的等距排列,利用打線連接各芯片、搭配光學(xué)封裝材料的整體封裝,形成一光源模組產(chǎn)品,而多片封裝可以在進(jìn)行芯片測(cè)試后,利用二次加工整合成一個(gè)等效大芯片的光源模組,但卻在制作彈性上較單片設(shè)計(jì)LED光源用元件要更具彈性。
同時(shí),多片之LED芯片模組解決方案,其生產(chǎn)成本也可因?yàn)樾酒杀径蠓档?,等于在獲得單片式設(shè)計(jì)方案同等光通量下,擁有成本更低的開(kāi)發(fā)選項(xiàng)。
多芯片整合光源模組 仍需考量成本效益最大化
另一個(gè)發(fā)展方向,是將LED芯片面積持續(xù)增大,透過(guò)大面積獲得高亮度、高光通量輸出效果。但過(guò)大的LED芯片面積也會(huì)出現(xiàn)不如設(shè)計(jì)預(yù)期之問(wèn)題,常見(jiàn)的改進(jìn)方案為修改復(fù)晶的結(jié)構(gòu),在芯片表面進(jìn)行制作改善;但相關(guān)改善方案也容易影響芯片本身的散熱效率,尤其在光源應(yīng)用的LED模組,大多要求在高功率下驅(qū)動(dòng)以獲得更高的光通量,這會(huì)造成芯片進(jìn)行發(fā)光過(guò)程中芯片接面所匯集的高熱不容易消散,影響模組產(chǎn)品的應(yīng)用彈性與主/被動(dòng)散熱設(shè)計(jì)方案。
一般設(shè)計(jì)方案中,據(jù)分析采行7mm2的芯片尺寸,其發(fā)光效率為最佳,但7mm2大型芯片在良率與光表現(xiàn)控制較不易,成本也相對(duì)較高;反而使用多片式芯片,如4片或8片小功率芯片,進(jìn)行二次加工于載板搭配封裝材料形成一LED光源模組,是較能快速開(kāi)發(fā)所需亮度、功率表現(xiàn)之LED光源模組產(chǎn)品的設(shè)計(jì)方案。
例如Philips、OSRAM、CREE等光源產(chǎn)品制造商,就推出整合4、8片或更多小型LED芯片封裝之LED光源模組產(chǎn)品。但這類利用多片LED芯片架構(gòu)的高亮度元件方案也引起了一些設(shè)計(jì)問(wèn)題,例如:多顆LED芯片組合封裝即必須搭配內(nèi)置絕緣材料,用以避免各別LED芯片短路現(xiàn)象;這樣的制程相對(duì)于單片式設(shè)計(jì)多了許多程序,因此即使能較單片式方案節(jié)省成本,也會(huì)因額外絕緣材料制程而縮小了兩種方案的成本差距。
應(yīng)用芯片表面制程改善 也可強(qiáng)化LED光輸出量
除了增加芯片面積或數(shù)量是最直接的方法外,也有另一種針對(duì)芯片本身材料特性的發(fā)光效能改善。例如,可在LED藍(lán)寶石基板上制作不平坦的表面結(jié)構(gòu),利用此一凹凸不規(guī)則之設(shè)計(jì)表面強(qiáng)化LED光輸出量,即為在芯片表面建立Texture表面結(jié)晶架構(gòu)。
OSRAM即有利用此方案開(kāi)發(fā)Thin GaN高亮度產(chǎn)品,于InGaN層先行形成金屬膜材質(zhì)、再進(jìn)行剝離制程,使剝離后的表面可間接獲得更高的光輸出量!OSRAM號(hào)稱此技術(shù)可以讓相同的芯片獲得75%光取出效率。
另一方面,日本OMRON的開(kāi)發(fā)思維就相當(dāng)不同,一樣是致力榨出芯片的光取出效率,OMRON即嘗試?yán)闷矫婀庠醇夹g(shù),搭配LENS光學(xué)系統(tǒng)為芯片光源進(jìn)行反射、引導(dǎo)與控制,針對(duì)傳統(tǒng)h彈型封裝結(jié)構(gòu)的LED產(chǎn)品常見(jiàn)的光損失問(wèn)題,進(jìn)一步改善其設(shè)計(jì)結(jié)構(gòu),利用雙層反射效果進(jìn)而控制與強(qiáng)化LED的光取出量,但這種封裝技術(shù)相對(duì)更為復(fù)雜、成本高,因此大多僅用于LCD TV背光模組設(shè)計(jì)。
LED照明應(yīng)用仍須改善元件光衰與壽命問(wèn)題
如果期待LED光源導(dǎo)入日常照明應(yīng)用,其應(yīng)用需克服的問(wèn)題就會(huì)更多!因?yàn)槿粘U彰鞴庠磿?huì)有長(zhǎng)時(shí)間使用之情境,往往一開(kāi)啟就連續(xù)用上數(shù)個(gè)小時(shí)、甚至數(shù)十小時(shí),那長(zhǎng)時(shí)間開(kāi)啟的LED將會(huì)因?yàn)樵母邿嵩斐尚酒陌l(fā)光衰減、壽命降低現(xiàn)象,元件必須針對(duì)熱處理提出更好的方案,以便于減緩光衰問(wèn)題過(guò)早發(fā)生,影響產(chǎn)品使用體驗(yàn)。
LED光源導(dǎo)入日常應(yīng)用的另一大問(wèn)題是,如傳統(tǒng)使用的螢光燈具,使用超過(guò)數(shù)十小時(shí)均可維持相同的發(fā)光效率,但LED就不同了。因?yàn)長(zhǎng)ED發(fā)光芯片會(huì)因?yàn)樵邿岫鴮?dǎo)致其發(fā)光效率遞減,且此一問(wèn)題不管在高功率或低功率LED皆然,只是低功率LED多僅用于指示性用途,對(duì)使用者來(lái)說(shuō)影響相當(dāng)小;但若LED作為光源使用,其光輸出遞減問(wèn)題會(huì)在為提高亮度而加強(qiáng)單顆元件的驅(qū)動(dòng)功率下越形加劇,一般會(huì)在使用過(guò)幾小時(shí)后出現(xiàn)亮度下滑,必須進(jìn)行散熱設(shè)計(jì)改善才能達(dá)到光源應(yīng)用需求。
LED封裝材料需因應(yīng)高溫、短波長(zhǎng)光線進(jìn)行改善
在光源設(shè)計(jì)方案中,往往會(huì)利用增加驅(qū)動(dòng)電流來(lái)?yè)Q取LED芯片更高的光輸出量,但這會(huì)讓芯片表面在發(fā)光過(guò)程產(chǎn)生的熱度持續(xù)增高,而芯片的高溫考驗(yàn)封裝材料的耐用度,連續(xù)運(yùn)行高溫的狀態(tài)下會(huì)致使原具備高熱耐用度的封裝材料出現(xiàn)劣化,且材料劣化或質(zhì)變也會(huì)進(jìn)一步造成透光度下滑,因此在開(kāi)發(fā)LED光源模組時(shí),亦必須針對(duì)封裝材料考量改用高抗熱材質(zhì)。
增加LED光源模組元件散熱方法相當(dāng)多,可以從芯片、封裝材料、模組之導(dǎo)熱結(jié)構(gòu)、PCB載板設(shè)計(jì)等進(jìn)行重點(diǎn)改善。例如,芯片到封裝材料之間,若能強(qiáng)化散熱傳導(dǎo)速度,快速將核心熱源透過(guò)封裝材料表面逸散也是一種方法。或是由芯片與載板間的接觸,直接將芯片核心高熱透過(guò)材料的直接傳導(dǎo)熱源至載板逸散,進(jìn)行LED芯片高熱的重點(diǎn)改善。此外,PCB采行金屬材料搭配與LED芯片緊貼組裝設(shè)計(jì),也可因?yàn)闇p少熱傳導(dǎo)的熱阻,達(dá)到快速散逸發(fā)光元件核心高熱的設(shè)計(jì)目標(biāo)。
另在封裝材料方面,以往LED元件多數(shù)采環(huán)氧樹(shù)脂進(jìn)行封裝,其實(shí)環(huán)氧樹(shù)脂本身的耐熱性并不高,往往LED芯片還在使用壽命未結(jié)束前,環(huán)氧樹(shù)脂就已經(jīng)因?yàn)殚L(zhǎng)時(shí)間高熱運(yùn)行而出現(xiàn)劣化、變質(zhì)的變色現(xiàn)象,這種狀況在照明應(yīng)用的LED模組設(shè)計(jì)中,會(huì)因?yàn)樾酒吖β黍?qū)動(dòng)而使封裝材料劣化的速度加快,甚至影響元件的安全性。
不只是高熱問(wèn)題,環(huán)氧樹(shù)脂這類塑料材質(zhì),對(duì)于光的敏感度較高,尤其是短波長(zhǎng)的光會(huì)讓環(huán)氧樹(shù)脂材料出現(xiàn)破壞現(xiàn)象,而高功率的LED光源模組,其短波長(zhǎng)光線會(huì)更多,對(duì)材料惡化速度也會(huì)有加劇現(xiàn)象。
針對(duì)LED光源應(yīng)用設(shè)計(jì)方案,多數(shù)業(yè)者大多傾向放棄環(huán)氧樹(shù)脂封裝材料,改用更耐高溫、抗短波長(zhǎng)光線的封裝材料,例如矽樹(shù)脂即具備較環(huán)氧樹(shù)脂更高的抗熱性,且在材料特性方面,矽樹(shù)脂可達(dá)到處于150~180°C環(huán)境下仍不會(huì)變色的材料優(yōu)勢(shì)。
此外,矽樹(shù)脂亦可分散藍(lán)色光與紫外線,矽樹(shù)脂可以抑制封裝材料因高熱或短波長(zhǎng)光線的材料劣化問(wèn)題,減緩封裝材料因?yàn)樽冑|(zhì)而導(dǎo)致透光率下滑問(wèn)題。而就LED光源模組來(lái)說(shuō),矽樹(shù)脂也有延長(zhǎng)LED元件使用壽命優(yōu)點(diǎn),因?yàn)槲鶚?shù)脂本身抗高熱與抗短波長(zhǎng)光線優(yōu)點(diǎn),在封裝材料可抵御LED長(zhǎng)時(shí)間使用產(chǎn)生的持續(xù)高熱與光線照射,材料的壽命相對(duì)長(zhǎng)許多,也可讓LED元件有超過(guò)4萬(wàn)小時(shí)的使用壽命。
評(píng)論