一種用于13 bit 40 MS/s流水線ADC中的采樣保持電路設(shè)計(jì)
近年來,隨著通信和多媒體市場(chǎng)的快速增長(zhǎng),數(shù)字系統(tǒng)無論在處理能力還是處理速度上都取得了飛速的發(fā)展,因此對(duì)作為模擬信號(hào)通向數(shù)字信號(hào)橋梁的模數(shù)轉(zhuǎn)換器(ADC)的性能要求也越來越高 [1]。在各種ADC結(jié)構(gòu)中,流水線ADC在速度和精度上能夠達(dá)到合理的折衷,因此得到了廣泛應(yīng)用。在流水線結(jié)構(gòu)ADC中,其前端采樣保持電路是整個(gè)系統(tǒng)的關(guān)鍵模塊之一,其性能直接決定了整個(gè)ADC的性能[2]。
本文引用地址:http://cafeforensic.com/article/201610/308236.htm本文對(duì)流水線ADC的采樣保持電路的結(jié)構(gòu)以及主要模塊如增益提高型運(yùn)算放大器電路、共模反饋電路和開關(guān)電路進(jìn)行了分析,并對(duì)各個(gè)模塊進(jìn)行了設(shè)計(jì),最終設(shè)計(jì)出一個(gè)適合于13 bit 40 MHz流水線ADC的采樣保持電路,仿真結(jié)果表明,該采樣保持電路滿足設(shè)計(jì)要求。
1 采樣保持電路結(jié)構(gòu)
采樣保持電路的結(jié)構(gòu)直接決定了采樣保持電路的精度和速度,圖1為常用的兩種全差分結(jié)構(gòu):電荷再分布型和電容翻轉(zhuǎn)型。全差分結(jié)構(gòu)能夠很好地消除直流偏置和偶次諧波失真,并抑制來自襯底的共模噪聲。
與電荷再分布型結(jié)構(gòu)相比較,電容翻轉(zhuǎn)型結(jié)構(gòu)的反饋系數(shù)為1,是電荷轉(zhuǎn)移型(在Cs=Cf=C時(shí),反饋系數(shù)為0.5)的兩倍,因此在同樣的閉環(huán)帶寬時(shí),電容翻轉(zhuǎn)式結(jié)構(gòu)所要求的運(yùn)放單位增益帶寬(GBW)只是電容電荷再分布式GBW的一半,所以電容翻轉(zhuǎn)型結(jié)構(gòu)具有功耗小的優(yōu)點(diǎn)[3]。另外由于電荷再分布型電路需要使用4個(gè)電容,但電容翻轉(zhuǎn)型只需要2個(gè)電容,在CMOS工藝中,電容需要大的實(shí)現(xiàn)面積,電容翻轉(zhuǎn)型結(jié)構(gòu)具有小的實(shí)現(xiàn)面積。因此,電容翻轉(zhuǎn)型更適合高速高精度的流水線ADC應(yīng)用,本文的采樣保持電路采用電容翻轉(zhuǎn)式結(jié)構(gòu)來實(shí)現(xiàn)。
2 增益提高型放大器的設(shè)計(jì)
運(yùn)算放大器是整個(gè)采樣保持電路中最重要的模塊,它的增益和帶寬直接決定了采樣保持電路的精度和速度。但增益和帶寬是相互矛盾的,高增益要求使用多級(jí)放大器、小的偏置電流、長(zhǎng)溝道器件;而大帶寬則要求使用單級(jí)放大器、大的偏置電流、短溝道器件,所以放大器是采樣保持電路設(shè)計(jì)的一個(gè)難點(diǎn)。
本文主運(yùn)算放大器采用全差分的折疊式共源共柵結(jié)構(gòu),并用增益提高技術(shù)來提高放大器的增益,達(dá)到了高增益和大帶寬的要求[4-5]。主運(yùn)算放大器電路如圖2 所示,由于NMOS管的遷移率高于PMOS管,在跨導(dǎo)相同的情況下,NMOS管具有較小的面積,從而使得運(yùn)算放大器具有較小的輸入電容,有利于提高采樣保持電路的反饋系數(shù),所以本文采用了NMOS管作為輸入對(duì)管的折疊式共源共柵結(jié)構(gòu)。兩個(gè)輔助運(yùn)算放大器BN和BP分別為NMOS和PMOS管作為輸入對(duì)管的折疊式共源共柵放大器。圖2 中的CMFB模塊為主運(yùn)算放大器的共模反饋電路,由于主運(yùn)放的輸出擺幅較大,所以采用如圖3(a)所示的開關(guān)電容共模反饋電路,開關(guān)電容共模反饋不會(huì)受輸出擺幅產(chǎn)生限制,并且其只有靜態(tài)功耗。對(duì)于兩個(gè)輔助運(yùn)放而言,由于其輸出和輸入范圍很小,所以采用如圖3(b)所示的連續(xù)時(shí)間共模反饋電路,這種電路沒有電容,節(jié)省了面積。圖2(b)為主運(yùn)算放大器在負(fù)載電容為6 pF時(shí)的頻率特性曲線,其增益為133 dB,帶寬約為478 MHz,相位余度為59.7度。整個(gè)放大器(包括偏置電路、輔助運(yùn)放、共模反饋電路)消耗的平均電流為8.5 mA。
3 采樣開關(guān)的設(shè)計(jì)
采樣開關(guān)的性能在采樣保持電路中占有十分重要的地位,對(duì)于一個(gè)簡(jiǎn)單的NMOS開關(guān),開關(guān)導(dǎo)通時(shí)其導(dǎo)通電阻Ron為:
可見,導(dǎo)通Ron是一個(gè)與輸入信號(hào)Vin相關(guān)的非線性電阻,這將在輸出信號(hào)中引入諧波失真 [5]。本文采用如圖4(a)所示的柵壓自舉開關(guān),開關(guān)的導(dǎo)通電阻隨輸入信號(hào)幅值變化的曲線圖如圖4(b)所示,曲線的斜率大約為11 Ω/V,其導(dǎo)通電阻隨輸入信號(hào)幅值的變化較小,具有較高的線性度。
4 仿真結(jié)果
采用TSMC的0.18 μm工藝對(duì)電路進(jìn)行了設(shè)計(jì),電源電壓為3.3 V,采樣時(shí)鐘為40 MHz,采用Spectre對(duì)電路進(jìn)行了仿真。在采樣保持電路的輸入端加一值為1 V的階躍信號(hào),其瞬態(tài)仿真結(jié)果如圖5所示。從圖中分析得出,在保持相結(jié)束時(shí)刻,采樣保持電路的輸出幅值為1.000 08 V,與理想電壓的誤差為0.08 mV,建立精度達(dá)到了0.008%。圖6所示為信號(hào)的頻譜分析,輸入峰-峰值為2 V,頻率為1.992 187 5 MHz的正弦信號(hào)。對(duì)輸出信號(hào)進(jìn)行4 096點(diǎn)的FFT, 結(jié)果顯示, 其SNDR為84.8 dB,SFDR為92 dB,有效位數(shù)為13.8 bit,能夠勝任13 bit 40 MHz流水線型ADC對(duì)前端采樣保持結(jié)構(gòu)的要求。整個(gè)采樣保持電路消耗的平均電流為8.501 mA。
本文設(shè)計(jì)了一個(gè)高速高精度的采樣保持電路,可作為13 bit 40 MHz流水線型ADC的前端模塊。該采樣保持電路為電容翻轉(zhuǎn)結(jié)構(gòu),采用柵壓自舉開關(guān)提高了開關(guān)的線性度,其運(yùn)算為增益提高型的折疊式共源共柵結(jié)構(gòu),達(dá)到了高速高增益的要求。仿真結(jié)果表明,整個(gè)采樣保持電路的精度和速度滿足了設(shè)計(jì)要求。
評(píng)論