色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > arm linux kernel 從入口到start_kernel 的代碼分析

          arm linux kernel 從入口到start_kernel 的代碼分析

          作者: 時間:2016-11-09 來源:網(wǎng)絡(luò) 收藏
          參考資料:

          《ARM體系結(jié)構(gòu)與編程》

          本文引用地址:http://cafeforensic.com/article/201611/317992.htm

          嵌入式Linux應(yīng)用開發(fā)完全手冊》

          Linux_Memory_Address_Mapping

          http://www.chinaunix.net/old_jh/4/1021226.html

          更多文檔參見:http://pan.baidu.com/s/1mg3DbHQ

          本文針對arm linux, 從kernel的第一條指令開始分析,一直分析到進(jìn)入start_kernel()函數(shù).
          我們當(dāng)前以linux-2.6.19內(nèi)核版本作為范例來分析,本文中所有的代碼,前面都會加上行號以便于和源碼進(jìn)行對照,
          例:
          在文件init/main.c中:
          00478: asmlinkage void __init start_kernel(void)
          前面的"00478:" 表示478行,冒號后面的內(nèi)容就是源碼了.
          在分析代碼的過程中,我們使用縮進(jìn)來表示各個代碼的調(diào)用層次.
          由于啟動部分有一些代碼是平臺特定的,雖然大部分的平臺所實現(xiàn)的功能都比較類似,但是為了更好的對code進(jìn)行說明,對于平臺相關(guān)的代碼,我們選擇at91(ARM926EJS)平臺進(jìn)行分析.
          另外,本文是以uncompressed kernel開始講解的.對于內(nèi)核解壓縮部分的code,在 arch/arm/boot/compressed中,本文不做討論.

          一. 啟動條件

          通常從系統(tǒng)上電到執(zhí)行到linux kenel這部分的任務(wù)是由boot loader來完成.
          關(guān)于boot loader的內(nèi)容,本文就不做過多介紹.
          這里只討論進(jìn)入到linux kernel的時候的一些限制條件,這一般是boot loader在最后跳轉(zhuǎn)到kernel之前要完成的:
          1. CPU必須處于SVC(supervisor)模式,并且IRQ和FIQ中斷都是禁止的;
          2. MMU(內(nèi)存管理單元)必須是關(guān)閉的, 此時虛擬地址對物理地址;
          3. 數(shù)據(jù)cache(Data cache)必須是關(guān)閉的
          4. 指令cache(Instruction cache)可以是打開的,也可以是關(guān)閉的,這個沒有強(qiáng)制要求;
          5. CPU 通用寄存器0 (r0)必須是 0;
          6. CPU 通用寄存器1 (r1)必須是 ARM Linux machine type (關(guān)于machine type, 我們后面會有講解)
          7. CPU 通用寄存器2 (r2) 必須是 kernel parameter list 的物理地址(parameter list 是由boot loader傳遞給kernel,用來描述設(shè)備信息屬性的列表,詳細(xì)內(nèi)容可參考"Booting ARM Linux"文檔).

          二. starting kernel

          首先,我們先對幾個重要的宏進(jìn)行說明(我們針對有MMU的情況):


          宏 位置 默認(rèn)值 說明
          KERNEL_RAM_ADDR arch/arm/kernel/head.S +26 0xc8 kernel在RAM中的的虛擬地址
          PAGE_OFFSET include/asm-arm/memeory.h +50 0xc0 內(nèi)核空間的起始虛擬地址
          TEXT_OFFSET arch/arm/Makefile +137 0x08 內(nèi)核相對于存儲空間的偏移
          TEXTADDR arch/arm/kernel/head.S +49 0xc8 kernel的起始虛擬地址
          PHYS_OFFSET include/asm-arm/arch-xxx/memory.h 平臺相關(guān) RAM的起始物理地址
          內(nèi)核的入口是stext,這是在arch/arm/kernel/vmlinux.lds.S中定義的:
          11: ENTRY(stext)
          對于vmlinux.lds.S,這是ld script文件,此文件的格式和匯編及C程序都不同,本文不對ld script作過多的介紹,只對內(nèi)核中用到的內(nèi)容進(jìn)行講解,關(guān)于ld的詳細(xì)內(nèi)容可以參考ld.info
          這里的ENTRY(stext) 表示程序的入口是在符號stext.
          而符號stext是在arch/arm/kernel/head.S中定義的:
          下面我們將arm linux boot的主要代碼列出來進(jìn)行一個概括的介紹,然后,我們會逐個的進(jìn)行詳細(xì)的講解.
          在arch/arm/kernel/head.S中 72 - 94 行,是arm linux boot的主代碼:
          72: ENTRY(stext)
          73: msr cpsr_c, #PSR_F_BIT PSR_I_BIT SVC_MODE @ ensure svc mode
          74: @ and irqs disabled
          75: mrc p15, 0, r9, c0, c0 @ get processor id
          76: bl __lookup_processor_type @ r5=procinfo r9=cpuid
          77: movs r10, r5 @ invalid processor (r5=0)?
          78: beq __error_p @ yes, error p
          79: bl __lookup_machine_type @ r5=machinfo
          80: movs r8, r5 @ invalid machine (r5=0)?
          81: beq __error_a @ yes, error a
          82: bl __create_page_tables
          83:
          84: /*
          85: * The following calls CPU specific code in a position independent
          86: * manner. See arch/arm/mm/proc-*.S for details. r10 = base of
          87: * xxx_proc_info structure selected by __lookup_machine_type
          88: * above. On return, the CPU will be ready for the MMU to be
          89: * turned on, and r0 will hold the CPU control register value.
          90: */
          91: ldr r13, __switch_data @ address to jump to after
          92: @ mmu has been enabled
          93: adr lr, __enable_mmu @ return (PIC) address
          94: add pc, r10, #PROCINFO_INITFUNC
          其中,73行是確保kernel運行在SVC模式下,并且IRQ和FIRQ中斷已經(jīng)關(guān)閉,這樣做是很謹(jǐn)慎的.
          arm linux boot的主線可以概括為以下幾個步驟:
          1. 確定 processor type (75 - 78行)
          2. 確定 machine type (79 - 81行)
          3. 創(chuàng)建頁表 (82行)
          4. 調(diào)用平臺特定的__cpu_flush函數(shù) (在struct proc_info_list中) (94 行)
          5. 開啟mmu (93行)
          6. 切換數(shù)據(jù) (91行)
          最終跳轉(zhuǎn)到start_kernel (在__switch_data的結(jié)束的時候,調(diào)用了 b start_kernel)
          下面,我們按照這個主線,逐步的分析Code.

          1. 確定 processor type

          arch/arm/kernel/head.S中:
          75: mrc p15, 0, r9, c0, c0 @ get processor id
          76: bl __lookup_processor_type @ r5=procinfo r9=cpuid
          77: movs r10, r5 @ invalid processor (r5=0)?
          78: beq __error_p @ yes, error p
          75行: 通過cp15協(xié)處理器的c0寄存器來獲得processor id的指令. 關(guān)于cp15的詳細(xì)內(nèi)容可參考相關(guān)的arm手冊
          76行: 跳轉(zhuǎn)到__lookup_processor_type.在__lookup_processor_type中,會把processor type 存儲在r5中
          77,78行: 判斷r5中的processor type是否是0,如果是0,說明是無效的processor type,跳轉(zhuǎn)到__error_p(出錯)
          __lookup_processor_type 函數(shù)主要是根據(jù)從cpu中獲得的processor id和系統(tǒng)中的proc_info進(jìn)行匹配,將匹配到的proc_info_list的基地址存到r5中, 0表示沒有找到對應(yīng)的processor type.
          下面我們分析__lookup_processor_type函數(shù)
          arch/arm/kernel/head-common.S中:
          00145: .type __lookup_processor_type, %function
          00146: __lookup_processor_type:
          00147: adr r3, 3f
          00148: ldmda r3, {r5 - r7}
          00149: sub r3, r3, r7 @ get offset between virt&phys
          00150: add r5, r5, r3 @ convert virt addresses to
          00151: add r6, r6, r3 @ physical address space
          00152: 1: ldmia r5, {r3, r4} @ value, mask
          00153: and r4, r4, r9 @ mask wanted bits
          00154: teq r3, r4
          00155: beq 2f
          00156: add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list)
          00157: cmp r5, r6
          00158: blo 1b
          00159: mov r5, #0 @ unknown processor
          00160: 2: mov pc, lr
          00161:
          00162: /*
          00163: * This provides a C-API version of the above function.
          00164: */
          00165: ENTRY(lookup_processor_type)
          00166: stmfd sp!, {r4 - r7, r9, lr}
          00167: mov r9, r0
          00168: bl __lookup_processor_type
          00169: mov r0, r5
          00170: ldmfd sp!, {r4 - r7, r9, pc}
          00171:
          00172: /*
          00173: * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
          00174: * more information about the __proc_info and __arch_info structures.
          00175: */
          00176: .long __proc_info_begin
          00177: .long __proc_info_end
          00178: 3: .long .
          00179: .long __arch_info_begin
          00180: .long __arch_info_end
          145, 146行是函數(shù)定義
          147行: 取地址指令,這里的3f是向前symbol名稱是3的位置,即第178行,將該地址存入r3.
          這里需要注意的是,adr指令取址,獲得的是基于pc的一個地址,要格外注意,這個地址是3f處的"運行時地址", 由于此時MMU還沒有打開,也可以理解成物理地址(實地址).(詳細(xì)內(nèi)容可參考arm指令手冊)
          148行: 因為r3中的地址是178行的位置的地址,因而執(zhí)行完后: (ldmda表示棧指針遞減,即r3遞減,內(nèi)存的地址編號較大的對應(yīng)寄存器編號較大的)
          r5存的是176行符號 __proc_info_begin的地址;
          r6存的是177行符號 __proc_info_end的地址;
          r7存的是3f處的地址.
          這里需要注意鏈接地址和運行時地址的區(qū)別. r3存儲的是運行時地址(物理地址),而r7中存儲的是鏈接地址(虛擬地址).
          __proc_info_begin和__proc_info_end是在arch/arm/kernel/vmlinux.lds.S中:
          31: __proc_info_begin = .;
          32: *(.proc.info.init)
          33: __proc_info_end = .;
          這里是聲明了兩個變量:__proc_info_begin 和 __proc_info_end,其中等號后面的"."是location counter(詳細(xì)內(nèi)容請參考ld.info)
          這三行的意思是: __proc_info_begin 的位置上,放置所有文件中的 ".proc.info.init" 段的內(nèi)容,然后緊接著是 __proc_info_end 的位置.
          kernel 使用struct proc_info_list來描述processor type.
          在 include/asm-arm/procinfo.h 中:
          29: struct proc_info_list {
          30: unsigned int cpu_val;
          31: unsigned int cpu_mask;
          32: unsigned long __cpu_mm_mmu_flags; /* used by head.S */
          33: unsigned long __cpu_io_mmu_flags; /* used by head.S */
          34: unsigned long __cpu_flush; /* used by head.S */
          35: const char *arch_name;
          36: const char *elf_name;
          37: unsigned int elf_hwcap;
          38: const char *cpu_name;
          39: struct processor *proc;
          40: struct cpu_tlb_fns *tlb;
          41: struct cpu_user_fns *user;
          42: struct cpu_cache_fns *cache;
          43: };
          我們當(dāng)前以at91為例,其processor是926的.
          在arch/arm/mm/proc-arm926.S 中:
          00464: .section ".proc.info.init", #alloc, #execinstr
          00465:
          00466: .type __arm926_proc_info,#object
          00467: __arm926_proc_info:
          00468: .long 0x41069260 @ ARM926EJ-S (v5TEJ)
          00469: .long 0xff0ffff0
          00470: .long PMD_TYPE_SECT
          00471: PMD_SECT_BUFFERABLE
          00472: PMD_SECT_CACHEABLE
          00473: PMD_BIT4
          00474: PMD_SECT_AP_WRITE
          00475: PMD_SECT_AP_READ
          00476: .long PMD_TYPE_SECT
          00477: PMD_BIT4
          00478: PMD_SECT_AP_WRITE
          00479: PMD_SECT_AP_READ
          00480: b __arm926_setup
          00481: .long cpu_arch_name
          00482: .long cpu_elf_name
          00483: .long HWCAP_SWPHWCAP_HALFHWCAP_THUMBHWCAP_FAST_MULTHWCAP_VFPHWCAP_EDSPHWCAP_JAVA
          00484: .long cpu_arm926_name
          00485: .long arm926_processor_functions
          00486: .long v4wbi_tlb_fns
          00487: .long v4wb_user_fns
          00488: .long arm926_cache_fns
          00489: .size __arm926_proc_info, . - __arm926_proc_info
          從464行,我們可以看到 __arm926_proc_info 被放到了".proc.info.init"段中.
          對照struct proc_info_list,我們可以看到 __cpu_flush的定義是在480行,即__arm926_setup.(我們將在"4. 調(diào)用平臺特定的__cpu_flush函數(shù)"一節(jié)中詳細(xì)分析這部分的內(nèi)容.)
          從以上的內(nèi)容我們可以看出: r5中的__proc_info_begin是proc_info_list的起始地址, r6中的__proc_info_end是proc_info_list的結(jié)束地址.
          149行: 從上面的分析我們可以知道r3中存儲的是3f處的物理地址,而r7存儲的是3f處的虛擬地址,這一行是計算當(dāng)前程序運行的物理地址和虛擬地址的差值,將其保存到r3中.
          150行: 將r5存儲的虛擬地址(__proc_info_begin)轉(zhuǎn)換成物理地址
          151行: 將r6存儲的虛擬地址(__proc_info_end)轉(zhuǎn)換成物理地址
          152行: 對照struct proc_info_list,可以得知,這句是將當(dāng)前proc_info的cpu_val和cpu_mask分別存r3, r4中
          153行: r9中存儲了processor id(arch/arm/kernel/head.S中的75行),與r4的cpu_mask進(jìn)行邏輯與操作,得到我們需要的值
          154行: 將153行中得到的值與r3中的cpu_val進(jìn)行比較
          155行: 如果相等,說明我們找到了對應(yīng)的processor type,跳到160行,返回
          156行: (如果不相等) , 將r5指向下一個proc_info,
          157行: 和r6比較,檢查是否到了__proc_info_end.
          158行: 如果沒有到__proc_info_end,表明還有proc_info配置,返回152行繼續(xù)查找
          159行: 執(zhí)行到這里,說明所有的proc_info都匹配過了,但是沒有找到匹配的,將r5設(shè)置成0(unknown processor)
          160行: 返回

          2. 確定 machine type

          arch/arm/kernel/head.S中:
          79: bl __lookup_machine_type @ r5=machinfo
          80: movs r8, r5 @ invalid machine (r5=0)?
          81: beq __error_a @ yes, error a
          79行: 跳轉(zhuǎn)到__lookup_machine_type函數(shù),在__lookup_machine_type中,會把struct machine_desc的基地址(machine type)存儲在r5中
          80,81行: 將r5中的 machine_desc的基地址存儲到r8中,并判斷r5是否是0,如果是0,說明是無效的machine type,跳轉(zhuǎn)到__error_a(出錯)
          __lookup_machine_type 函數(shù)
          下面我們分析__lookup_machine_type 函數(shù):
          arch/arm/kernel/head-common.S中:
          00176: .long __proc_info_begin
          00177: .long __proc_info_end
          00178: 3: .long .
          00179: .long __arch_info_begin
          00180: .long __arch_info_end
          00181:
          00182: /*
          00183: * Lookup machine architecture in the linker-build list of architectures.
          00184: * Note that we cant use the absolute addresses for the __arch_info
          00185: * lists since we arent running with the MMU on (and therefore, we are
          00186: * not in the correct address space). We have to calculate the offset.
          00187: *
          00188: * r1 = machine architecture number
          00189: * Returns:
          00190: * r3, r4, r6 corrupted
          00191: * r5 = mach_info pointer in physical address space
          00192: */
          00193: .type __lookup_machine_type, %function
          00194: __lookup_machine_type:
          00195: adr r3, 3b
          00196: ldmia r3, {r4, r5, r6}
          00197: sub r3, r3, r4 @ get offset between virt&phys
          00198: add r5, r5, r3 @ convert virt addresses to
          00199: add r6, r6, r3 @ physical address space
          00200: 1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type
          00201: teq r3, r1 @ matches loader number?
          00202: beq 2f @ found
          00203: add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
          00204: cmp r5, r6
          00205: blo 1b
          00206: mov r5, #0 @ unknown machine
          00207: 2: mov pc, lr
          193, 194行: 函數(shù)聲明
          195行: 取地址指令,這里的3b是向后symbol名稱是3的位置,即第178行,將該地址存入r3.
          和上面我們對__lookup_processor_type 函數(shù)的分析相同,r3中存放的是3b處物理地址.
          196行: r3是3b處的地址,因而執(zhí)行完后:(ldmia 表示棧是遞增的,即r3遞增,低內(nèi)存地址對應(yīng)小號寄存器)
          r4存的是 3b處的地址
          r5存的是__arch_info_begin 的地址
          r6存的是__arch_info_end 的地址
          __arch_info_begin 和 __arch_info_end是在 arch/arm/kernel/vmlinux.lds.S中:
          34: __arch_info_begin = .;
          35: *(.arch.info.init)
          36: __arch_info_end = .;
          這里是聲明了兩個變量:__arch_info_begin 和 __arch_info_end,其中等號后面的"."是location counter(詳細(xì)內(nèi)容請參考ld.info)
          這三行的意思是: __arch_info_begin 的位置上,放置所有文件中的 ".arch.info.init" 段的內(nèi)容,然后緊接著是 __arch_info_end 的位置.
          kernel 使用struct machine_desc 來描述 machine type.
          在 include/asm-arm/mach/arch.h 中:
          17: struct machine_desc {
          18: /*
          19: * Note! The first four elements are used
          20: * by assembler code in head-armv.S
          21: */
          22: unsigned int nr; /* architecture number */
          23: unsigned int phys_io; /* start of physical io */
          24: unsigned int io_pg_offst; /* byte offset for io
          25: * page tabe entry */
          26:
          27: const char *name; /* architecture name */
          28: unsigned long boot_params; /* tagged list */
          29:
          30: unsigned int video_start; /* start of video RAM */
          31: unsigned int video_end; /* end of video RAM */
          32:
          33: unsigned int reserve_lp0 :1; /* never has lp0 */
          34: unsigned int reserve_lp1 :1; /* never has lp1 */
          35: unsigned int reserve_lp2 :1; /* never has lp2 */
          36: unsigned int soft_reboot :1; /* soft reboot */
          37: void (*fixup)(struct machine_desc *,
          38: struct tag *, char **,
          39: struct meminfo *);
          40: void (*map_io)(void);/* IO mapping function */
          41: void (*init_irq)(void);
          42: struct sys_timer *timer; /* system tick timer */
          43: void (*init_machine)(void);
          44: };
          45:
          46: /*
          47: * Set of macros to define architecture features. This is built into
          48: * a table by the linker.
          49: */
          50: #define MACHINE_START(_type,_name)
          51: static const struct machine_desc __mach_desc_##_type
          52: __attribute_used__
          53: __attribute__((__section__(".arch.info.init"

          )) = {
          54: .nr = MACH_TYPE_##_type,
          55: .name = _name,
          56:
          57: #define MACHINE_END
          58: };
          內(nèi)核中,一般使用宏MACHINE_START來定義machine type.
          對于at91, 在 arch/arm/mach-at91rm9200/board-ek.c 中:
          00137: MACHINE_START(AT91RM9200EK, "Atmel AT91RM9200-EK"


          00138: /* Maintainer: SAN People/Atmel */
          00139: .phys_io = AT91_BASE_SYS,
          00140: .io_pg_offst = (AT91_VA_BASE_SYS >> 1

          & 0xfffc,
          00141: .boot_params = AT91_SDRAM_BASE + 0x100,
          00142: .timer = &at91rm9200_timer,
          00143: .map_io = ek_map_io,
          00144: .init_irq = ek_init_irq,
          00145: .init_machine = ek_board_init,
          00146: MACHINE_END
          197行: r3中存儲的是3b處的物理地址,而r4中存儲的是3b處的虛擬地址,這里計算處物理地址和虛擬地址的差值,保存到r3中
          198行: 將r5存儲的虛擬地址(__arch_info_begin)轉(zhuǎn)換成物理地址
          199行: 將r6存儲的虛擬地址(__arch_info_end)轉(zhuǎn)換成物理地址
          200行: MACHINFO_TYPE 在 arch/arm/kernel/asm-offset.c 101行定義, 這里是取 struct machine_desc中的nr(architecture number) 到r3中
          201行: 將r3中取到的machine type 和 r1中的 machine type(見前面的"啟動條件"

          進(jìn)行比較
          202行: 如果相同,說明找到了對應(yīng)的machine type,跳轉(zhuǎn)到207行的2f處,此時r5中存儲了對應(yīng)的struct machine_desc的基地址
          203行: (不相同), 取下一個machine_desc的地址
          204行: 和r6進(jìn)行比較,檢查是否到了__arch_info_end.
          205行: 如果不相同,說明還有machine_desc,返回200行繼續(xù)查找.
          206行: 執(zhí)行到這里,說明所有的machind_desc都查找完了,并且沒有找到匹配的, 將r5設(shè)置成0(unknown machine).
          207行: 返回

          3. 創(chuàng)建頁表

          通過前面的兩步,我們已經(jīng)確定了processor type 和 machine type.
          此時,一些特定寄存器的值如下所示:
          r8 = machine info (struct machine_desc的基地址)
          r9 = cpu id (通過cp15協(xié)處理器獲得的cpu id)
          r10 = procinfo (struct proc_info_list的基地址)
          創(chuàng)建頁表是通過函數(shù) __create_page_tables 來實現(xiàn)的.
          這里,我們使用的是arm的L1主頁表,L1主頁表也稱為段頁表(section page table)
          L1 主頁表將4 GB 的地址空間分成若干個1 MB的段(section),因此L1頁表包含4096個頁表項(section entry). 每個頁表項是32 bits(4 bytes)
          因而L1主頁表占用 4096 *4 = 16k的內(nèi)存空間.
          對于ARM926,其L1 section entry的格式為

          可參考arm926EJS TRM):

          (一級描述符的格式 可以參考《ARM體系結(jié)構(gòu)與編程》P180)

          下面我們來分析 __create_page_tables 函數(shù):
          在 arch/arm/kernel/head.S 中:
          00206: .type __create_page_tables, %function
          00207: __create_page_tables:
          00208: pgtbl r4 @ page table address
          00209:
          00210: /*
          00211: * Clear the 16K level 1 swapper page table
          00212: */
          00213: mov r0, r4
          00214: mov r3, #0
          00215: add r6, r0, #0x4
          00216: 1: str r3, [r0], #4
          00217: str r3, [r0], #4
          00218: str r3, [r0], #4
          00219: str r3, [r0], #4
          00220: teq r0, r6
          00221: bne 1b
          00:
          00223: ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
          00224:
          00225: /*
          00226: * Create identity mapping for first MB of kernel to
          00227: * cater for the MMU enable. This identity mapping
          00228: * will be removed by paging_init(). We use our current program
          00229: * counter to determine corresponding section base address.
          00230: */
          00231: mov r6, pc, lsr #20 @ start of kernel section
          00232: orr r3, r7, r6, lsl #20 @ flags + kernel base
          00233: str r3, [r4, r6, lsl #2] @ identity mapping
          00234:
          00235: /*
          00236: * Now setup the pagetables for our kernel direct
          00237: * mapped region.
          00238: */
          00239: add r0, r4, #(TEXTADDR & 0xff) >> 18 @ start of kernel
          00240: str r3, [r0, #(TEXTADDR & 0x00f00) >> 18]!
          00241:
          00242: ldr r6, =(_end - PAGE_OFFSET - 1) @ r6 = number of sections
          00243: mov r6, r6, lsr #20 @ needed for kernel minus 1
          00244:
          00245: 1: add r3, r3, #1 << 20
          00246: str r3, [r0, #4]!
          00247: subs r6, r6, #1
          00248: bgt 1b
          00249:
          00250: /*
          00251: * Then map first 1MB of ram in case it contains our boot params.
          00252: */
          00253: add r0, r4, #PAGE_OFFSET >> 18
          00254: orr r6, r7, #PHYS_OFFSET
          00255: str r6, [r0]
          ...
          00314: mov pc, lr
          00315: .ltorg
          206, 207行: 函數(shù)聲明
          208行: 通過宏 pgtbl 將r4設(shè)置成頁表的基地址(物理地址)
          宏pgtbl 在 arch/arm/kernel/head.S 中:
          42: .macro pgtbl, rd
          43: ldr rd, =(__virt_to_phys(KERNEL_RAM_ADDR - 0x4))
          44: .endm
          可以看到,頁表是位于 KERNEL_RAM_ADDR 下面 16k 的位置
          宏 __virt_to_phys 是在incude/asm-arm/memory.h 中:
          00125: #ifndef __virt_to_phys
          00126: #define __virt_to_phys(x) ((x) - PAGE_OFFSET + PHYS_OFFSET)
          00127: #define __phys_to_virt(x) ((x) - PHYS_OFFSET + PAGE_OFFSET)
          00128: #endif
          下面從213行 - 221行, 是將這16k 的頁表清0.
          213行: r0 = r4, 將頁表基地址存在r0中
          214行: 將 r3 置成0
          215行: r6 = 頁表基地址 + 16k, 可以看到這是頁表的尾地址
          216 - 221 行: 循環(huán),從 r0 到 r6 將這16k頁表用0填充.
          223行: 獲得proc_info_list的__cpu_mm_mmu_flags的值,并存儲到 r7中. (宏P(guān)ROCINFO_MM_MMUFLAGS是在arch/arm/kernel/asm-offset.c中定義,值為8)(可以參考《嵌入式Linux應(yīng)用完全開發(fā)手冊》P118)(r7的值就是設(shè)置這個段描述符的權(quán)限、域字段,)

          在arch/arm/mm/proc-arm926.S 中:
          00464:         .section ".proc.info.init", #alloc, #execinstr
          00465: 
          00466:         .type        __arm926_proc_info,#object
          00467: __arm926_proc_info:
          00468:         .long        0x41069260                        @ ARM926EJ-S (v5TEJ)
          00469:         .long        0xff0ffff0
          00470:         .long   PMD_TYPE_SECT  
          00471:                 PMD_SECT_BUFFERABLE  
          00472:                 PMD_SECT_CACHEABLE  
          00473:                 PMD_BIT4  
          00474:                 PMD_SECT_AP_WRITE  
          00475:                 PMD_SECT_AP_READ
          00476:         .long   PMD_TYPE_SECT  
          00477:                 PMD_BIT4  
          00478:                 PMD_SECT_AP_WRITE  
          00479:                 PMD_SECT_AP_READ
          00480:         b        __arm926_setup
          00481:         .long        cpu_arch_name
          00482:         .long        cpu_elf_name
          00483:         .long        HWCAP_SWPHWCAP_HALFHWCAP_THUMBHWCAP_FAST_MULTHWCAP_VFPHWCAP_EDSPHWCAP_JAVA
          00484:         .long        cpu_arm926_name
          00485:         .long        arm926_processor_functions
          00486:         .long        v4wbi_tlb_fns
          00487:         .long        v4wb_user_fns
          00488:         .long        arm926_cache_fns
          00489:         .size        __arm926_proc_info, . - __arm926_proc_info




          231行: 通過pc值的高12位(右移20位),得到kernel的section,并存儲到r6中.因為當(dāng)前是通過運行時地址得到的kernel的section,因而是物理地址.
          232行: r3 = r7 (r6 << 20); flags + kernel base,得到頁表中需要設(shè)置的值.
          233行: 設(shè)置頁表: mem[r4 + r6 * 4] = r3
          這里,因為頁表的每一項是32 bits(4 bytes),所以要乘以4(<<2).
          上面這三行,設(shè)置了kernel的第一個section(物理地址所在的page entry)的頁表項
          239, 240行: TEXTADDR是內(nèi)核的起始虛擬地址(0xc8), 這兩行是設(shè)置kernel起始虛擬地址的頁表項(注意,這里設(shè)置的頁表項和上面的231 - 233行設(shè)置的頁表項是不同的 )
          執(zhí)行完后,r0指向kernel的第2個section的虛擬地址所在的頁表項.
          /* TODO: 這兩行的code很奇怪,為什么要先取TEXTADDR的高8位(Bit[31:24])0xff,然后再取后面的8位 (Bit[23:20])0x00f00*/
          242行: 這一行計算kernel鏡像的大小(bytes).
          _end 是在vmlinux.lds.S中162行定義的,標(biāo)記kernel的結(jié)束位置(虛擬地址):
          00158 .bss : {
          00159 __bss_start = .; /* BSS */
          00160 *(.bss)
          00161 *(COMMON)
          00162 _end = .;
          00163 }
          kernel的size = _end - PAGE_OFFSET -1, 這里 減1的原因是因為 _end 是 location counter,它的地址是kernel鏡像后面的一個byte的地址.
          243行: 地址右移20位,計算出kernel有多少sections(也就是有多少兆,因為段描述符每個可以映射1MiB的虛擬地址),并將結(jié)果存到r6中
          245 - 248行: 這幾行用來填充kernel所有section虛擬地址對應(yīng)的頁表項.
          253行: 將r0設(shè)置為RAM第一兆虛擬地址的頁表項地址(page entry)
          254行: r7中存儲的是mmu flags, 邏輯或上RAM的起始物理地址,得到RAM第一個MB頁表項的值.
          255行: 設(shè)置RAM的第一個MB虛擬地址的頁表.
          上面這三行是用來設(shè)置RAM中第一兆虛擬地址的頁表. 之所以要設(shè)置這個頁表項的原因是RAM的第一兆內(nèi)存中可能存儲著boot params.
          這樣,kernel所需要的基本的頁表我們都設(shè)置完了, 如下圖所示:

          下面是linux-2.6.30.4中的arch/arm/kernel/head.S,代碼有一些不同,但是效果一樣:

          1: /*
          2:  *  linux/arch/arm/kernel/head.S
          3:  *
          4:  *  Copyright (C) 1994-2002 Russell King
          5:  *  Copyright (c) 2003 ARM Limited
          6:  *  All Rights Reserved
          7:  *
          8:  * This program is free software; you can redistribute it and/or modify
          9:  * it under the terms of the GNU General Public License version 2 as
          10:  * published by the Free Software Foundation.
          11:  *
          12:  *  Kernel startup code for all 32-bit CPUs
          13:  */
          14: #include 
          15: #include 
          16: 
          17: #include 
          18: #include 
          19: #include 
          20: #include 
          21: #include 
          22: #include 
          23: #include 
          24: 
          25: #if (PHYS_OFFSET & 0x001fffff)
          26: #error "PHYS_OFFSET must be at an even 2MiB boundary!"
          27: #endif
          28: 
          29: #define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)
          30: #define KERNEL_RAM_PADDR    (PHYS_OFFSET + TEXT_OFFSET)
          31: 
          32: 
          33: /*
          34:  * swapper_pg_dir is the virtual address of the initial page table.
          35:  * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must
          36:  * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect
          37:  * the least significant 16 bits to be 0x8, but we could probably
          38:  * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4.
          39:  */
          40: #if (KERNEL_RAM_VADDR & 0xffff) != 0x8
          41: #error KERNEL_RAM_VADDR must start at 0xXXXX8
          42: #endif
          43: 
          44:     .globl    swapper_pg_dir
          45:     .equ    swapper_pg_dir, KERNEL_RAM_VADDR - 0x4
          46: 
          47:     .macro    pgtbl, rd
          48:     ldr    rd, =(KERNEL_RAM_PADDR - 0x4)
          49:     .endm
          50: 
          51: #ifdef CONFIG_XIP_KERNEL
          52: #define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
          53: #define KERNEL_END    _edata_loc
          54: #else
          55: #define KERNEL_START    KERNEL_RAM_VADDR
          56: #define KERNEL_END    _end
          57: #endif
          58: 
          59: /*
          60:  * Kernel startup entry point.
          61:  * 
          62:  *
          63:  * This is normally called from the decompressor code.  The requirements
          64:  * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
          65:  * r1 = machine nr, r2 = atags pointer.
          66:  *
          67:  * This code is mostly position independent, so if you link the kernel at
          68:  * 0xc8, you call this at __pa(0xc8).
          69:  *
          70:  * See linux/arch/arm/tools/mach-types for the complete list of machine
          71:  * numbers for r1.
          72:  *
          73:  * Were trying to keep crap to a minimum; DO NOT add any machine specific
          74:  * crap here - thats what the boot loader (or in extreme, well justified
          75:  * circumstances, zImage) is for.
          76:  */
          77:     .section ".text.head", "ax"
          78: ENTRY(stext)
          79:     msr    cpsr_c, #PSR_F_BIT  PSR_I_BIT  SVC_MODE @ ensure svc mode
          80:                         @ and irqs disabled
          81:     mrc    p15, 0, r9, c0, c0        @ get processor id
          82:     bl    __lookup_processor_type        @ r5=procinfo r9=cpuid
          83:     movs    r10, r5                @ invalid processor (r5=0)?
          84:     beq    __error_p            @ yes, error p
          85:     bl    __lookup_machine_type        @ r5=machinfo
          86:     movs    r8, r5                @ invalid machine (r5=0)?
          87:     beq    __error_a            @ yes, error a
          88:     bl    __vet_atags
          89:     bl    __create_page_tables
          90: 
          91:     /*
          92:      * The following calls CPU specific code in a position independent
          93:      * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
          94:      * xxx_proc_info structure selected by __lookup_machine_type
          95:      * above.  On return, the CPU will be ready for the MMU to be
          96:      * turned on, and r0 will hold the CPU control register value.
          97:      */
          98:     ldr    r13, __switch_data        @ address to jump to after
          99:                         @ mmu has been enabled
          100:     adr    lr, __enable_mmu        @ return (PIC) address
          101:     add    pc, r10, #PROCINFO_INITFUNC
          102: ENDPROC(stext)
          103: 
          104: #if defined(CONFIG_SMP)
          105: ENTRY(secondary_startup)
          106:     /*
          107:      * Common entry point for secondary CPUs.
          108:      *
          109:      * Ensure that were in SVC mode, and IRQs are disabled.  Lookup
          110:      * the processor type - there is no need to check the machine type
          :      * as it has already been validated by the primary processor.
          112:      */
          113:     msr    cpsr_c, #PSR_F_BIT  PSR_I_BIT  SVC_MODE
          114:     mrc    p15, 0, r9, c0, c0        @ get processor id
          115:     bl    __lookup_processor_type
          116:     movs    r10, r5                @ invalid processor?
          117:     moveq    r0, #p            @ yes, error p
          118:     beq    __error
          119: 
          120:     /*
          121:      * Use the page tables supplied from  __cpu_up.
          122:      */
          123:     adr    r4, __secondary_data
          124:     ldmia    r4, {r5, r7, r13}        @ address to jump to after
          125:     sub    r4, r4, r5            @ mmu has been enabled
          126:     ldr    r4, [r7, r4]            @ get secondary_data.pgdir
          127:     adr    lr, __enable_mmu        @ return address
          128:     add    pc, r10, #PROCINFO_INITFUNC    @ initialise processor
          129:                         @ (return control reg)
          130: ENDPROC(secondary_startup)
          131: 
          132:     /*
          133:      * r6  = &secondary_data
          134:      */
          135: ENTRY(__secondary_switched)
          136:     ldr    sp, [r7, #4]            @ get secondary_data.stack
          137:     mov    fp, #0
          138:     b    secondary_start_kernel
          139: ENDPROC(__secondary_switched)
          140: 
          141:     .type    __secondary_data, %object
          142: __secondary_data:
          143:     .long    .
          144:     .long    secondary_data
          145:     .long    __secondary_switched
          146: #endif /* defined(CONFIG_SMP) */
          147: 
          148: 
          149: 
          150: /*
          151:  * Setup common bits before finally enabling the MMU.  Essentially
          152:  * this is just loading the page table pointer and domain access
          153:  * registers.
          154:  */
          155: __enable_mmu:
          156: #ifdef CONFIG_ALIGNMENT_TRAP
          157:     orr    r0, r0, #CR_A
          158: #else
          159:     bic    r0, r0, #CR_A
          160: #endif
          161: #ifdef CONFIG_CPU_DCACHE_DISABLE
          162:     bic    r0, r0, #CR_C
          163: #endif
          164: #ifdef CONFIG_CPU_BPREDICT_DISABLE
          165:     bic    r0, r0, #CR_Z
          166: #endif
          167: #ifdef CONFIG_CPU_ICACHE_DISABLE
          168:     bic    r0, r0, #CR_I
          169: #endif
          170:     mov    r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER)  
          171:               domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER)  
          172:               domain_val(DOMAIN_TABLE, DOMAIN_MANAGER)  
          173:               domain_val(DOMAIN_IO, DOMAIN_CLIENT))
          174:     mcr    p15, 0, r5, c3, c0, 0        @ load domain access register
          175:     mcr    p15, 0, r4, c2, c0, 0        @ load page table pointer
          176:     b    __turn_mmu_on
          177: ENDPROC(__enable_mmu)
          178: 
          179: /*
          180:  * Enable the MMU.  This completely changes the structure of the visible
          181:  * memory space.  You will not be able to trace execution through this.
          182:  * If you have an enquiry about this, *please* check the linux-arm-kernel
          183:  * mailing list archives BEFORE sending another post to the list.
          184:  *
          185:  *  r0  = cp#15 control register
          186:  *  r13 = *virtual* address to jump to upon completion
          187:  *
          188:  * other registers depend on the function called upon completion
          189:  */
          190:     .align    5
          191: __turn_mmu_on:
          192:     mov    r0, r0
          193:     mcr    p15, 0, r0, c1, c0, 0        @ write control reg
          194:     mrc    p15, 0, r3, c0, c0, 0        @ read id reg
          195:     mov    r3, r3
          196:     mov    r3, r3
          197:     mov    pc, r13
          198: ENDPROC(__turn_mmu_on)
          199: 
          200: 
          201: /*
          202:  * Setup the initial page tables.  We only setup the barest
          203:  * amount which are required to get the kernel running, which
          204:  * generally means mapping in the kernel code.
          205:  *
          206:  * r8  = machinfo
          207:  * r9  = cpuid
          208:  * r10 = procinfo
          209:  *
          210:  * Returns:
          211:  *  r0, r3, r6, r7 corrupted
          212:  *  r4 = physical page table address
          213:  */
          214: __create_page_tables:
          215:     pgtbl    r4                @ page table address
          216: 
          217:     /*
          218:      * Clear the 16K level 1 swapper page table
          219:      */
          220:     mov    r0, r4
          221:     mov    r3, #0
          :     add    r6, r0, #0x4
          223: 1:    str    r3, [r0], #4
          224:     str    r3, [r0], #4
          225:     str    r3, [r0], #4
          226:     str    r3, [r0], #4
          227:     teq    r0, r6
          228:     bne    1b
          229: 
          230:     ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
          231: 
          232:     /*
          233:      * Create identity mapping for first MB of kernel to
          234:      * cater for the MMU enable.  This identity mapping
          235:      * will be removed by paging_init().  We use our current program
          236:      * counter to determine corresponding section base address.
          237:      */
          238:     mov    r6, pc, lsr #20            @ start of kernel section
          239:     orr    r3, r7, r6, lsl #20        @ flags + kernel base
          240:     str    r3, [r4, r6, lsl #2]        @ identity mapping
          241: 
          242:     /*
          243:      * Now setup the pagetables for our kernel direct
          244:      * mapped region.
          245:      */
          246:     add    r0, r4,  #(KERNEL_START & 0xff) >> 18
          247:     str    r3, [r0, #(KERNEL_START & 0x00f00) >> 18]!
          248:     ldr    r6, =(KERNEL_END - 1)
          249:     add    r0, r0, #4
          250:     add    r6, r4, r6, lsr #18
          251: 1:    cmp    r0, r6
          252:     add    r3, r3, #1 << 20
          253:     strls    r3, [r0], #4
          254:     bls    1b
          255: 
          256: #ifdef CONFIG_XIP_KERNEL
          257:     /*
          258:      * Map some ram to cover our .data and .bss areas.
          259:      */
          260:     orr    r3, r7, #(KERNEL_RAM_PADDR & 0xff)
          261:     .if    (KERNEL_RAM_PADDR & 0x00f00)
          262:     orr    r3, r3, #(KERNEL_RAM_PADDR & 0x00f00)
          263:     .endif
          264:     add    r0, r4,  #(KERNEL_RAM_VADDR & 0xff) >> 18
          265:     str    r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00) >> 18]!
          266:     ldr    r6, =(_end - 1)
          267:     add    r0, r0, #4
          268:     add    r6, r4, r6, lsr #18
          269: 1:    cmp    r0, r6
          270:     add    r3, r3, #1 << 20
          271:     strls    r3, [r0], #4
          272:     bls    1b
          273: #endif
          274: 
          275:     /*
          276:      * Then map first 1MB of ram in case it contains our boot params.
          277:      */
          278:     add    r0, r4, #PAGE_OFFSET >> 18
          279:     orr    r6, r7, #(PHYS_OFFSET & 0xff)
          280:     .if    (PHYS_OFFSET & 0x00f00)
          281:     orr    r6, r6, #(PHYS_OFFSET & 0x00f00)
          282:     .endif
          283:     str    r6, [r0]
          284: 
          285: #ifdef CONFIG_DEBUG_LL
          286:     ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
          287:     /*
          288:      * Map in IO space for serial debugging.
          289:      * This allows debug messages to be output
          290:      * via a serial console before paging_init.
          291:      */
          292:     ldr    r3, [r8, #MACHINFO_PGOFFIO]
          293:     add    r0, r4, r3
          294:     rsb    r3, r3, #0x4            @ PTRS_PER_PGD*sizeof(long)
          295:     cmp    r3, #0x0800            @ limit to 512MB
          296:     movhi    r3, #0x0800
          297:     add    r6, r0, r3
          298:     ldr    r3, [r8, #MACHINFO_PHYSIO]
          299:     orr    r3, r3, r7
          300: 1:    str    r3, [r0], #4
          301:     add    r3, r3, #1 << 20
          302:     teq    r0, r6
          303:     bne    1b
          304: #if defined(CONFIG_ARCH_NETWINDER)  defined(CONFIG_ARCH_CATS)
          305:     /*
          306:      * If were using the NetWinder or CATS, we also need to map
          307:      * in the 16550-type serial port for the debug messages
          308:      */
          309:     add    r0, r4, #0xff >> 18
          310:     orr    r3, r7, #0x7c
          311:     str    r3, [r0]
          312: #endif
          313: #ifdef CONFIG_ARCH_RPC
          314:     /*
          315:      * Map in screen at 0x02 & SCREEN2_BASE
          316:      * Similar reasons here - for debug.  This is
          317:      * only for Acorn RiscPC architectures.
          318:      */
          319:     add    r0, r4, #0x02 >> 18
          320:     orr    r3, r7, #0x02
          321:     str    r3, [r0]
          322:     add    r0, r4, #0xd8 >> 18
          323:     str    r3, [r0]
          324: #endif
          325: #endif
          326:     mov    pc, lr
          327: ENDPROC(__create_page_tables)
          328:     .ltorg
          329: 
          330: #include "head-common.S"

          下面僅對__create_page_tables進(jìn)行簡單注釋:

          1: __create_page_tables:
          2:     pgtbl    r4                @ page table address
          3: 
          4:     /*
          5:      * Clear the 16K level 1 swapper page table
          6:      */
          7:     mov    r0, r4
          8:     mov    r3, #0
          9:     add    r6, r0, #0x4
          10: 1:    str    r3, [r0], #4
          11:     str    r3, [r0], #4
          12:     str    r3, [r0], #4
          13:     str    r3, [r0], #4
          14:     teq    r0, r6
          15:     bne    1b
          16: 
          17:     ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
          18: 
          19:     /*
          20:      * Create identity mapping for first MB of kernel to
          21:      * cater for the MMU enable.  This identity mapping
          22:      * will be removed by paging_init().  We use our current program
          23:      * counter to determine corresponding section base address.
          24:      下面三句完成:
          25:      以tq2440為例:
          26: 
          27:      將虛擬機(jī)地址0x30~0x30100映射到物理地址的0x30~0x30100-1
          28: 
          29:      */
          30:     mov    r6, pc, lsr #20            @ start of kernel section  此時pc在0x38附近,r6=0x300
          31:     orr    r3, r7, r6, lsl #20        @ flags + kernel base      構(gòu)造段描述符的內(nèi)容,為什么是20,參見《ARM體系結(jié)構(gòu)與編程》
          32:     str    r3, [r4, r6, lsl #2]        @ identity mapping     填寫頁表項,完成映射
          33:     
          34: 
          35:     /*
          36:      * Now setup the pagetables for our kernel direct
          37:      * mapped region.
          38:      KERNEL_START = 0xC8
          39:      KERNEL_END = _end  在鏈接腳本中,它的地址是kernel鏡像后面的一個byte的地址
          40: 
          41:      */
          42:     add    r0, r4,  #(KERNEL_START & 0xff) >> 18 
          43:     @為什么是18,因為一級頁表每個描述符4個字節(jié),r4是一個字節(jié)一個字節(jié)的加
          44:     str    r3, [r0, #(KERNEL_START & 0x00f00) >> 18]!
          45:     @上面完成的任務(wù):將虛擬地址0xC0~0xC0100-1映射到物理地址的0x30~0x30100-1,因為r3
          46:     @中還是上次的值
          47:     
          48:     ldr    r6, =(KERNEL_END - 1)  @可以知道r6是一個虛擬地址,0xC8+解壓后的內(nèi)核大小-1
          49:     add    r0, r0, #4  @r0指向下一個待填寫的頁表項
          50:     add    r6, r4, r6, lsr #18  @r6指向最后一個頁表項的地址 ls后綴:無符號數(shù)小于等于
          51: 1:    cmp    r0, r6
          52:     add    r3, r3, #1 << 20
          53:     strls    r3, [r0], #4
          54:     bls    1b   
          55:     @通過循環(huán),將內(nèi)核所在的虛擬地址空間(0xC8+解壓內(nèi)核大小-1)映射到物理內(nèi)存
          56:     @0x38+解壓內(nèi)核大小-1,接下來,mmu開啟后,就不用考慮是不是位置無關(guān)碼了。
          57: 
          58: 
          59:     /*
          60:      * Then map first 1MB of ram in case it contains our boot params.
          61:      個人感覺:
          62:      對于tq2440將內(nèi)核加載到距離物理內(nèi)存起始地址32KiB的地方時,也就是0x38,下面的代碼
          63:      不要也可以,因為下面的目的就是將虛擬地址0xC0映射到物理地址的0x30,這個
          64:      上面的代碼已經(jīng)完成了。
          65: 
          66:      但是,如果沒有將內(nèi)核加載到距離物理內(nèi)存起始地址32KiB的地方,比如加載到0x30300,即距離
          67:      物理內(nèi)存起始地址3MiB的地方,下面的代碼就有必要了,這種情況下,上面的代碼僅僅完成了將:
          68: 
          69:      虛擬地址0xC0300~解壓內(nèi)核大小-1映射到物理內(nèi)存0x30300~解壓內(nèi)核大小-1,沒有將uboot傳給
          70:      內(nèi)核的參數(shù)所在的內(nèi)存區(qū)域(一般在距離物理內(nèi)存起始地址16KiB范圍內(nèi))進(jìn)行映射。下面的代碼完成了
          71:      這個任務(wù),此時PAGE_OFFSET=0xc0  PHYS_OFFSET=0x30
          72:      完成將虛擬地址0xC0~0xC0100-1映射到物理地址的0x30~0x30100-1
          73:      */
          74:     add    r0, r4, #PAGE_OFFSET >> 18
          75:     orr    r6, r7, #(PHYS_OFFSET & 0xff)
          76:     .if    (PHYS_OFFSET & 0x00f00)
          77:     orr    r6, r6, #(PHYS_OFFSET & 0x00f00)
          78:     .endif
          79:     str    r6, [r0]
          80: 
          81:     mov    pc, lr
          82: ENDPROC(__create_page_tables)
          83:     .ltorg

          4. 調(diào)用平臺特定的 __cpu_flush 函數(shù)


          當(dāng) __create_page_tables 返回之后
          此時,一些特定寄存器的值如下所示:
          r4 = pgtbl (page table 的物理基地址)
          r8 = machine info (struct machine_desc的基地址)
          r9 = cpu id (通過cp15協(xié)處理器獲得的cpu id)
          r10 = procinfo (struct proc_info_list的基地址)
          在我們需要在開啟mmu之前,做一些必須的工作:清除ICache, 清除 DCache, 清除 Writebuffer, 清除TLB等.
          這些一般是通過cp15協(xié)處理器來實現(xiàn)的,并且是平臺相關(guān)的. 這就是 __cpu_flush 需要做的工作.
          在 arch/arm/kernel/head.S中
          91: ldr r13, __switch_data @ address to jump to after
          92: @ mmu has been enabled
          93: adr lr, __enable_mmu @ return (PIC) address
          94: add pc, r10, #PROCINFO_INITFUNC
          第91行: 將r13設(shè)置為 __switch_data 的地址
          第92行: 將lr設(shè)置為 __enable_mmu 的地址
          第93行: r10存儲的是procinfo的基地址, PROCINFO_INITFUNC是在 arch/arm/kernel/asm-offset.c 中107行定義.
          則該行將pc設(shè)為 proc_info_list的 __cpu_flush 函數(shù)的地址, 即下面跳轉(zhuǎn)到該函數(shù).

          對于arm920t來說,PROCINFO_INITFUNC=16,此時r10+16->b __arm920_setup

          1: .section ".proc.info.init", #alloc, #execinstr
          2: 
          3: .type    __arm920_proc_info,#object
          4: m920_proc_info:
          5: .long    0x41009200
          6: .long    0xff00fff0
          7: .long   PMD_TYPE_SECT  
          8:     PMD_SECT_BUFFERABLE  
          9:     PMD_SECT_CACHEABLE  
          10:     PMD_BIT4  
          11:     PMD_SECT_AP_WRITE  
          12:     PMD_SECT_AP_READ
          13: .long   PMD_TYPE_SECT  
          14:     PMD_BIT4  
          15:     PMD_SECT_AP_WRITE  
          16:     PMD_SECT_AP_READ
          17: b    __arm920_setup
          18: .long    cpu_arch_name
          19: .long    cpu_elf_name
          20: .long    HWCAP_SWP  HWCAP_HALF  HWCAP_THUMB
          21: .long    cpu_arm920_name
          22: .long    arm920_processor_functions
          23: .long    v4wbi_tlb_fns
          24: .long    v4wb_user_fns
          25: def CONFIG_CPU_DCACHE_WRITETHROUGH
          26: .long    arm920_cache_fns
          27: e
          28: .long    v4wt_cache_fns
          29: if
          30: .size    __arm920_proc_info, . - __arm920_proc_info


          在分析 __lookup_processor_type 的時候,我們已經(jīng)知道,對于 ARM926EJS 來說,其__cpu_flush指向的是函數(shù) __arm926_setup
          下面我們來分析函數(shù) __arm926_setup
          在 arch/arm/mm/proc-arm926.S 中:
          00391: .type __arm926_setup, #function
          00392: __arm926_setup:
          00393: mov r0, #0
          00394: mcr p15, 0, r0, c7, c7 @ invalidate I,D caches on v4
          00395: mcr p15, 0, r0, c7, c10, 4 @ drain write buffer on v4
          00396: #ifdef CONFIG_MMU
          00397: mcr p15, 0, r0, c8, c7 @ invalidate I,D TLBs on v4
          00398: #endif
          00399:
          00400:
          00401: #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
          00402: mov r0, #4 @ disable write-back on caches explicitly
          00403: mcr p15, 7, r0, c15, c0, 0
          00404: #endif
          00405:
          00406: adr r5, arm926_crval
          00407: ldmia r5, {r5, r6}
          00408: mrc p15, 0, r0, c1, c0 @ get control register v4
          00409: bic r0, r0, r5
          00410: orr r0, r0, r6
          00411: #ifdef CONFIG_CPU_CACHE_ROUND_ROBIN
          00412: orr r0, r0, #0x4 @ .1.. .... .... ....
          00413: #endif
          00414: mov pc, lr
          00415: .size __arm926_setup, . - __arm926_setup
          00416:
          00417: /*
          00418: * R
          00419: * .RVI ZFRS BLDP WCAM
          00420: * .011 1 ..11 0101
          00421: *
          00422: */
          00423: .type arm926_crval, #object
          00424: arm926_crval:
          00425: crval clear=0x07f3f, mmuset=0x03135, ucset=0x01134
          第391, 392行: 是函數(shù)聲明
          第393行: 將r0設(shè)置為0
          第394行: 清除(invalidate)Instruction Cache 和 Data Cache.
          第395行: 清除(drain) Write Buffer.
          第396 - 398行: 如果有配置了MMU,則需要清除(invalidate)Instruction TLB 和Data TLB
          接下來,是對控制寄存器c1進(jìn)行配置,請參考 ARM926 TRM.
          第401 - 404行: 如果配置了Data Cache使用writethrough方式, 需要關(guān)掉write-back.
          第406行: 取arm926_crval的地址到r5中, arm926_crval 在第424行
          第407行: 這里我們需要看一下424和425行,其中用到了宏crval,crval是在 arch/arm/mm/proc-macro.S 中:
          53: .macro crval, clear, mmuset, ucset
          54: #ifdef CONFIG_MMU
          55: .word clear
          56: .word mmuset
          57: #else
          58: .word clear
          59: .word ucset
          60: #endif
          61: .endm
          配合425行,我們可以看出,首先在arm926_crval的地址處存放了clear的值,然后接下來的地址存放了mmuset的值(對于配置了MMU的情況)
          所以,在407行中,我們將clear和mmuset的值分別存到了r5, r6中
          第408行: 獲得控制寄存器c1的值
          第409行: 將r0中的 clear (r5) 對應(yīng)的位都清除掉
          第410行: 設(shè)置r0中 mmuset (r6) 對應(yīng)的位
          第411 - 413行: 如果配置了使用 round robin方式,需要設(shè)置控制寄存器c1的 Bit[16]
          第412行: 取lr的值到pc中.
          而lr中的值存放的是 __enable_mmu 的地址(arch/arm/kernel/head.S 93行),所以,接下來就是跳轉(zhuǎn)到函數(shù) __enable_mmu

          5. 開啟mmu

          開啟mmu是又函數(shù) __enable_mmu 實現(xiàn)的.
          在進(jìn)入 __enable_mmu 的時候, r0中已經(jīng)存放了控制寄存器c1的一些配置(在上一步中進(jìn)行的設(shè)置), 但是并沒有真正的打開mmu,
          在 __enable_mmu 中,我們將打開mmu.
          此時,一些特定寄存器的值如下所示:
          r0 = c1 parameters (用來配置控制寄存器的參數(shù))
          r4 = pgtbl (page table 的物理基地址)
          r8 = machine info (struct machine_desc的基地址)
          r9 = cpu id (通過cp15協(xié)處理器獲得的cpu id)
          r10 = procinfo (struct proc_info_list的基地址)
          在 arch/arm/kernel/head.S 中:
          00146: .type __enable_mmu, %function
          00147: __enable_mmu:
          00148: #ifdef CONFIG_ALIGNMENT_TRAP
          00149: orr r0, r0, #CR_A
          00150: #else
          00151: bic r0, r0, #CR_A
          00152: #endif
          00153: #ifdef CONFIG_CPU_DCACHE_DISABLE
          00154: bic r0, r0, #CR_C
          00155: #endif
          00156: #ifdef CONFIG_CPU_BPREDICT_DISABLE
          00157: bic r0, r0, #CR_Z
          00158: #endif
          00159: #ifdef CONFIG_CPU_ICACHE_DISABLE
          00160: bic r0, r0, #CR_I
          00161: #endif
          00162: mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER)
          00163: domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER)
          00164: domain_val(DOMAIN_TABLE, DOMAIN_MANAGER)
          00165: domain_val(DOMAIN_IO, DOMAIN_CLIENT))
          00166: mcr p15, 0, r5, c3, c0, 0 @ load domain access register
          00167: mcr p15, 0, r4, c2, c0, 0 @ load page table pointer
          00168: b __turn_mmu_on
          00169:
          00170: /*
          00171: * Enable the MMU. This completely changes the structure of the visible
          00172: * memory space. You will not be able to trace execution through this.
          00173: * If you have an enquiry about this, *please* check the linux-arm-kernel
          00174: * mailing list archives BEFORE sending another post to the list.
          00175: *
          00176: * r0 = cp#15 control register
          00177: * r13 = *virtual* address to jump to upon completion
          00178: *
          00179: * other registers depend on the function called upon completion
          00180: */
          00181: .align 5
          00182: .type __turn_mmu_on, %function
          00183: __turn_mmu_on:
          00184: mov r0, r0
          00185: mcr p15, 0, r0, c1, c0, 0 @ write control reg
          00186: mrc p15, 0, r3, c0, c0, 0 @ read id reg
          00187: mov r3, r3
          00188: mov r3, r3
          00189: mov pc, r13
          第146, 147行: 函數(shù)聲明
          第148 - 161行: 根據(jù)相應(yīng)的配置,設(shè)置r0中的相應(yīng)的Bit. (r0 將用來配置控制寄存器c1)
          第162 - 165行: 設(shè)置 domain 參數(shù)r5.(r5 將用來配置domain)
          第166行: 配置 domain (詳細(xì)信息清參考arm相關(guān)手冊)
          第167行: 配置頁表在存儲器中的位置(set ttb).這里頁表的基地址是r4, 通過寫cp15的c2寄存器來設(shè)置頁表基地址.
          第168行: 跳轉(zhuǎn)到 __turn_mmu_on. 從名稱我們可以猜到,下面是要真正打開mmu了.
          (繼續(xù)向下看,我們會發(fā)現(xiàn),__turn_mmu_on就下當(dāng)前代碼的下方,為什么要跳轉(zhuǎn)一下呢? 這是有原因的. go on)
          第169 - 180行: 空行和注釋. 這里的注釋我們可以看到, r0是cp15控制寄存器的內(nèi)容, r13存儲了完成后需要跳轉(zhuǎn)的虛擬地址(因為完成后mmu已經(jīng)打開了,都是虛擬地址了).
          第181行: .algin 5 這句是cache line對齊. 我們可以看到下面一行就是 __turn_mmu_on, 之所以
          第182 - 183行: __turn_mmu_on 的函數(shù)聲明. 這里我們可以看到, __turn_mmu_on 是緊接著上面第168行的跳轉(zhuǎn)指令的,只是中間在第181行多了一個cache line對齊.
          這么做的原因是: 下面我們要進(jìn)行真正的打開mmu操作了, 我們要把打開mmu的操作放到一個單獨的cache line上. 而在之前的"啟動條件"一節(jié)我們說了,I Cache是可以打開也可以關(guān)閉的,這里這么做的原因是要保證在I Cache打開的時候,打開mmu的操作也能正常執(zhí)行.
          第184行: 這是一個空操作,相當(dāng)于nop. 在arm中,nop操作經(jīng)常用指令 mov rd, rd 來實現(xiàn).
          注意: 為什么這里要有一個nop,我思考了很長時間,這里是我的猜測,可能不是正確的:
          因為之前設(shè)置了頁表基地址(set ttb),到下一行(185行)打開mmu操作,中間的指令序列是這樣的:
          set ttb(第167行)
          branch(第168行)
          nop(第184行)
          enable mmu(第185行)
          對于arm的五級流水線: fetch - decode - execute - memory - write
          他們執(zhí)行的情況如下圖所示:



          這里需要說明的是,branch操作會在3個cycle中完成,并且會導(dǎo)致重新取指.
          從這個圖我們可以看出來,在enable mmu操作取指的時候, set ttb操作剛好完成.
          第185行: 寫cp15的控制寄存器c1, 這里是打開mmu的操作,同時會打開cache等(根據(jù)r0相應(yīng)的配置)
          第186行: 讀取id寄存器.
          第187 - 188行: 兩個nop.
          第189行: 取r13到pc中,我們前面已經(jīng)看到了, r13中存儲的是 __switch_data (在 arch/arm/kernel/head.S 91行),下面會跳到 __switch_data.
          第187,188行的兩個nop是非常重要的,因為在185行打開mmu操作之后,要等到3個cycle之后才會生效,這和arm的流水線有關(guān)系.
          因而,在打開mmu操作之后的加了兩個nop操作.

          6. 切換數(shù)據(jù)

          在 arch/arm/kernel/head-common.S 中:
          14: .type __switch_data, %object
          15: __switch_data:
          16: .long __mmap_switched
          17: .long __data_loc @ r4
          18: .long __data_start @ r5
          19: .long __bss_start @ r6
          20: .long _end @ r7
          21: .long processor_id @ r4
          22: .long __machine_arch_type @ r5
          23: .long cr_alignment @ r6
          24: .long init_thread_union + THREAD_START_SP @ sp
          25:
          26: /*
          27: * The following fragment of code is executed with the MMU on in MMU mode,
          28: * and uses absolute addresses; this is not position independent.
          29: *
          30: * r0 = cp#15 control register
          31: * r1 = machine ID
          32: * r9 = processor ID
          33: */
          34: .type __mmap_switched, %function
          35: __mmap_switched:
          36: adr r3, __switch_data + 4
          37:
          38: ldmia r3!, {r4, r5, r6, r7}
          39: cmp r4, r5 @ Copy data segment if needed
          40: 1: cmpne r5, r6
          41: ldrne fp, [r4], #4
          42: strne fp, [r5], #4
          43: bne 1b
          44:
          45: mov fp, #0 @ Clear BSS (and zero fp)
          46: 1: cmp r6, r7
          47: strcc fp, [r6],#4
          48: bcc 1b
          49:
          50: ldmia r3, {r4, r5, r6, sp}
          51: str r9, [r4] @ Save processor ID
          52: str r1, [r5] @ Save machine type
          53: bic r4, r0, #CR_A @ Clear A bit
          54: stmia r6, {r0, r4} @ Save control register values
          55: b start_kernel
          第14, 15行: 函數(shù)聲明
          第16 - 24行: 定義了一些地址,例如第16行存儲的是 __mmap_switched 的地址, 第17行存儲的是 __data_loc 的地址 ......
          第34, 35行: 函數(shù) __mmap_switched
          第36行: 取 __switch_data + 4的地址到r3. 從上文可以看到這個地址就是第17行的地址.
          第37行: 依次取出從第17行到第20行的地址,存儲到r4, r5, r6, r7 中. 并且累加r3的值.當(dāng)執(zhí)行完后, r3指向了第21行的位置.
          對照上文,我們可以得知:
          r4 - __data_loc
          r5 - __data_start
          r6 - __bss_start
          r7 - _end
          這幾個符號都是在 arch/arm/kernel/vmlinux.lds.S 中定義的變量:
          00102: #ifdef CONFIG_XIP_KERNEL
          00103: __data_loc = ALIGN(4); /* location in binary */
          00104: . = PAGE_OFFSET + TEXT_OFFSET;
          00105: #else
          00106: . = ALIGN(THREAD_SIZE);
          00107: __data_loc = .;
          00108: #endif
          00109:
          00110: .data : AT(__data_loc) {
          00: __data_start = .; /* address in memory */
          00112:
          00113: /*
          00114: * first, the init task union, aligned
          00115: * to an 8192 byte boundary.
          00116: */
          00117: *(.init.task)
          ......
          00158: .bss : {
          00159: __bss_start = .; /* BSS */
          00160: *(.bss)
          00161: *(COMMON)
          00162: _end = .;
          00163: }
          對于這四個變量,我們簡單的介紹一下:
          __data_loc 是數(shù)據(jù)存放的位置
          __data_start 是數(shù)據(jù)開始的位置
          __bss_start 是bss開始的位置
          _end 是bss結(jié)束的位置, 也是內(nèi)核結(jié)束的位置
          其中對第110行的指令講解一下: 這里定義了.data 段,后面的AT(__data_loc) 的意思是這部分的內(nèi)容是在__data_loc中存儲的(要注意,儲存的位置和鏈接的位置是可以不相同的).
          關(guān)于 AT 詳細(xì)的信息請參考 ld.info
          第38行: 比較 __data_loc 和 __data_start
          第39 - 43行: 這幾行是判斷數(shù)據(jù)存儲的位置和數(shù)據(jù)的開始的位置是否相等,如果不相等,則需要搬運數(shù)據(jù),從 __data_loc 將數(shù)據(jù)搬到 __data_start.
          其中 __bss_start 是bss的開始的位置,也標(biāo)志了 data 結(jié)束的位置,因而用其作為判斷數(shù)據(jù)是否搬運完成.
          第45 - 48行: 是清除 bss 段的內(nèi)容,將其都置成0. 這里使用 _end 來判斷 bss 的結(jié)束位置.
          第50行: 因為在第38行的時候,r3被更新到指向第21行的位置.因而這里取得r4, r5, r6, sp的值分別是:
          r4 - processor_id
          r5 - __machine_arch_type
          r6 - cr_alignment
          sp - init_thread_union + THREAD_START_SP
          processor_id 和 __machine_arch_type 這兩個變量是在 arch/arm/kernel/setup.c 中 第62, 63行中定義的.
          cr_alignment 是在 arch/arm/kernel/entry-armv.S 中定義的:
          00182: .globl cr_alignment
          00183: .globl cr_no_alignment
          00184: cr_alignment:
          00185: .space 4
          00186: cr_no_alignment:
          00187: .space 4
          init_thread_union 是 init進(jìn)程的基地址. 在 arch/arm/kernel/init_task.c 中:
          33: union thread_union init_thread_union
          34: __attribute__((__section__(".init.task"))) =
          35: { INIT_THREAD_INFO(init_task) };
          對照 vmlnux.lds.S 中的 的117行,我們可以知道init task是存放在 .data 段的開始8k, 并且是THREAD_SIZE(8k)對齊的
          第51行: 將r9中存放的 processor id (在arch/arm/kernel/head.S 75行) 賦值給變量 processor_id
          第52行: 將r1中存放的 machine id (見"啟動條件"一節(jié))賦值給變量 __machine_arch_type
          第53行: 清除r0中的 CR_A 位并將值存到r4中. CR_A 是在 include/asm-arm/system.h 21行定義, 是cp15控制寄存器c1的Bit[1](alignment fault enable/disable)
          第54行: 這一行是存儲控制寄存器的值.
          從上面 arch/arm/kernel/entry-armv.S 的代碼我們可以得知.
          這一句是將r0存儲到了 cr_alignment 中,將r4存儲到了 cr_no_alignment 中.
          第55行: 最終跳轉(zhuǎn)到start_kernel



          關(guān)鍵詞: armlinuxkernel代碼分

          評論


          技術(shù)專區(qū)

          關(guān)閉