LED倒裝技術(shù)及工藝流程分析
發(fā)光二極管(LED)作為新型的綠色照明光源,具有節(jié)能、高效、低碳、體積小、反應(yīng)快、抗震性強等優(yōu)點,可以為用戶提供環(huán)保、穩(wěn)定、高效和安全的全新照明體驗,已經(jīng)逐步發(fā)展成為成熟的半導(dǎo)體照明產(chǎn)業(yè)。
本文引用地址:http://cafeforensic.com/article/201612/325347.htm近年來,全球各個國家紛紛開始禁用白熾燈泡,LED將會迎來一個黃金的增長期。此外,近年來LED在電視機背光、手機、和平板電腦等方面的應(yīng)用也迎來了爆發(fā)式的增長,LED具有廣闊的應(yīng)用發(fā)展前景。
2、倒裝LED技術(shù)的發(fā)展及現(xiàn)狀
倒裝技術(shù)在LED領(lǐng)域上還是一個比較新的技術(shù)概念,但在傳統(tǒng)IC行業(yè)中已經(jīng)被廣泛應(yīng)用且比較成熟,如各種球柵陣列封裝(BGA)、芯片尺寸封裝(CSP)、晶片級芯片尺寸封裝(WLCSP)等技術(shù),全部采用倒裝芯片技術(shù),其優(yōu)點是生產(chǎn)效率高、器件成本低和可靠性高。
倒裝芯片技術(shù)應(yīng)用于LED器件,主要區(qū)別于IC在于,在LED芯片制造和封裝過程中,除了要處理好穩(wěn)定可靠的電連接以外,還需要處理光的問題,包括如何讓更多的光引出來,提高出光效率,以及光空間的分布等。
針對傳統(tǒng)正裝LED存在的散熱差、透明電極電流分布不均勻、表面電極焊盤和引線擋光以及金線導(dǎo)致的可靠性問題,1998年,J.J.Wierer等人制備出了1W倒裝焊接結(jié)構(gòu)的大功率AlGaInN-LED藍光芯片,他們將金屬化凸點的AIGalnN芯片倒裝焊接在具有防靜電保護二極管(ESD)的硅載體上。
圖1是他們制備得到的LED芯片的圖片和截面示意圖。他們的測試結(jié)果表明,在相同的芯片面積下,倒裝LED芯片(FCLED)比正裝芯片有著更大的發(fā)光面積和非常好的電學(xué)特性,在200-1000mA的電流范圍,正向電壓(VF)相對較低,從而導(dǎo)致了更高的功率轉(zhuǎn)化效率。
圖1 倒裝結(jié)構(gòu)的LED芯片圖片和截面示意圖
2006年,O.B.Shchekin等人又報道了一種新的薄膜倒裝焊接的多量子阱結(jié)構(gòu)的LED(TFFC-LED)。所謂薄膜倒裝LED,就是將薄膜LED與倒裝LED的概念結(jié)合起來。
在將LED倒裝在基板上后,采用激光剝離(Laser lift-off)技術(shù)將藍寶石襯底剝離掉,然后在暴露的N型GaN層上用光刻技術(shù)做表面粗化。
如圖2所示,這種薄膜結(jié)構(gòu)的LED可以有效地增加出光效率。但相對來說,這種結(jié)構(gòu)工藝比較復(fù)雜,成本會相對較高。
圖2 薄膜倒裝LED芯片結(jié)構(gòu)示意圖
隨著硅基倒裝芯片在市場上銷售,逐漸發(fā)現(xiàn)這種倒裝LED芯片在與正裝芯片競爭時,其成本上處于明顯的劣勢。
由于LED發(fā)展初期,所有封裝支架和形式都是根據(jù)其正裝或垂直結(jié)構(gòu)LED芯片進行設(shè)計的,所以倒裝LED芯片不得不先倒裝在硅基板上,然后將芯片固定在傳統(tǒng)的支架上,再用金線將硅基板上的電極與支架上的電極進行連接。
使得封裝器件內(nèi)還是有金線的存在,沒有利用上倒裝無金線封裝的優(yōu)勢;而且還增加了基板的成本,使得價格較高,完全沒有發(fā)揮出倒裝LED芯片的優(yōu)勢。
為此,最早于2007年有公司推出了陶瓷基倒裝LED封裝產(chǎn)品。這一類型的產(chǎn)品,陶瓷既作為倒裝芯片的支撐基板,也作為整體封裝支架,實現(xiàn)整封裝光源的小型化。
這一封裝形式是先將倒裝芯片焊接(Bonding)在陶瓷基板上,再進行熒光粉的涂覆,最后用鑄模(Molding)的方法制作一次透鏡,這一方法將LED芯片和封裝工藝結(jié)合起來,降低了成本。
這種結(jié)構(gòu)完全消除了金線,同時散熱效果明顯改善,典型熱阻<10℃/W,明顯低于傳統(tǒng)的K2形式的封裝(典型10-20℃/W)。
隨著倒裝技術(shù)的進一步應(yīng)用和發(fā)展,2012年開始,出現(xiàn)了可直接貼裝(Direct Attach,DA)倒裝芯片;隨后幾年,各個公司都開始研發(fā)和推出這一類型的倒裝芯片。
該芯片在結(jié)構(gòu)上的變化是,將LED芯片表面的P、N兩個金屬焊盤幾何尺寸做大,同時保證兩個焊盤之間的間距足夠,這樣使得倒裝的LED芯片能夠在陶瓷基板上甚至是PCB板上直接貼片了,使40mil左右的倒裝芯片焊盤尺寸能夠到達貼片機的貼片精度要求,簡化了芯片倒裝焊接工藝,降低了整體成本。
至目前為止(2014年中)倒裝DA芯片已基本成熟,市場銷售量逐步增加,未來將會成為大功率LED芯片的主流。
在直接貼裝DA芯片基礎(chǔ)上,2013年開始發(fā)展出了白光芯片(部分公司稱為免封裝或無封裝)產(chǎn)品,如圖6所示。它是在倒裝DA芯片制造過程中同時完成了熒光粉的涂敷,應(yīng)用時可在PCB上直接進行貼片,完全可以當作封裝光源直接應(yīng)用。
其優(yōu)勢是LED器件體積小,芯片直接貼片可以減少散熱的界面,進一步降低了熱阻,散熱性能進一步提高。到目前為止,白光芯片仍然處于研發(fā)階段,市場的應(yīng)用還不成熟,需要大家共同努力,推動白光芯片技術(shù)和應(yīng)用的發(fā)展。
圖3 白光芯片與封裝示意圖
3、倒裝LED芯片的制作工藝
倒裝LED芯片的制作工藝流程,如圖4所示,總體上可以分為LED芯片制作和基板制造兩條線,芯片和基板制造完成后,將LED芯片倒裝焊接在基板表面上,形成倒裝LED芯片。
圖4 倒裝LED芯片工藝流程框圖
3.1、藍寶石襯底和GaN外延工藝技術(shù)
對于倒裝芯片來說,出光面在藍寶石的一側(cè),因此在外延之前,制作圖形化的襯底(PSS),將有利于藍光的出光,減少光在GaN和藍寶石界面的反射。因此PSS的圖形尺寸大小、形狀和深度等都對出光效率有直接的影響。在實際開發(fā)和生產(chǎn)中需要針對倒裝芯片的特點,對襯底圖形進行優(yōu)化,使出光效率最高。
在GaN外延方面,由于倒裝芯片出光在藍寶石一側(cè),其各層的吸光情況與正裝芯片有差異,因此需要對外延的緩沖層(Buffer)、N-GaN層、多層量子阱(MQW)和P型GaN層的厚度和摻雜濃度進行調(diào)整,使之適合倒裝芯片的出光要求,提高出光效率,同時適合倒裝芯片制造工藝的歐姆接觸的需要。
3.2、倒裝LED圓片制程工藝
倒裝芯片與正裝芯片的圓片制作過程大致相同,都需要在外延層上進行刻蝕,露出下層的N型GaN;然后在P和N極上分別制作出歐姆接觸電極,再在芯片表面制作鈍化保護層,最后制作焊接用的金屬焊盤,其制作流程如圖5所示。
圖5 倒裝LED圓片制作流程
與正裝芯片相比,倒裝芯片需要制作成電極朝下的結(jié)構(gòu)。這種特殊的結(jié)構(gòu),使得倒裝芯片在一些工藝步驟上有特殊的需求,如歐姆接觸層必須具有高反射率,使得射向芯片電極表面的光能夠盡量多的反射回藍寶石的一面,以保證良好的出光效率。
倒裝芯片的版圖也需要根據(jù)電流的均勻分布,做最優(yōu)化的設(shè)計。由于圓片制作工藝中,GaN刻蝕(Mesa刻蝕)、N型接觸層制作、鈍化層制作、焊接金屬PAD制作都與正裝芯片基本相同,這里就不詳細講述了,下面重點針對倒裝芯片特殊工藝進行簡單的說明。
在LED芯片的制作過程中,歐姆接觸層的工藝是芯片生產(chǎn)的核心,對倒裝芯片來說尤為重要。歐姆接觸層既有傳統(tǒng)的肩負起電性連接的功能,也作為反光層的作用,如圖9所示。
在P型歐姆接觸層的制作工藝中,要選擇合適的歐姆接觸材料,既要保證與P型GaN接觸電阻要小,又要保證超高的反射率。此外,金屬層厚度和退火工藝對歐姆接觸特性和反射率的影響非常大,此工藝至關(guān)重要,其關(guān)系到整個LED的光效、電壓等重要技術(shù)參數(shù),是倒裝LED芯片工藝中最重要的一環(huán)。
目前這層歐姆接觸層一般都是用銀(Ag)或者銀的合金材料來制作,在合適的工藝條件下,可以獲得穩(wěn)定的高性能的歐姆接觸,同時能夠保證歐姆接觸層的反射率超過95%。
圖6 倒裝芯片出光方向、散熱通道、歐姆接觸、反光層位置示意圖
3.3、倒裝LED芯片后段制程
與正裝LED芯片一樣,圓片工藝制程后,還包括芯片后段的工藝制程,其工藝流程如圖7所示,主要包括研磨、拋光、切割、劈裂、測試和分類等工序。這里工序中,唯一有不同的是測試工序,其它工序基本與正裝芯片完全相同,這里不再贅述。
圖7 LED芯片后段工藝制程流程圖
倒裝芯片由于出光面與電極面在不同方向,因此在切割后的芯片點測時,探針在LED正面電極上扎針測量時,LED的光是從背面發(fā)出。要測試LED的光特性(波長、亮度、半波寬等),必須從探針臺的下面收光。
因此倒裝芯片的點測機臺與正裝點測機臺不同,測光裝置(探頭或積分球)必須放在探針和芯片的下面,而且芯片的載臺必須是透光的,才能對光特性進行測試。
所以,倒裝芯片的點測機臺需要特殊制造或改造。
評論