電阻性電源負(fù)載的模擬在線電阻監(jiān)視
帶簡(jiǎn)單的電阻性負(fù)載電流監(jiān)視功能的典型電源控制應(yīng)用可以如圖1所示那樣建模,其中忽略了任何感抗現(xiàn)象。在這種集總模型中,U是供電電壓;I是電路中的電流;R是電源負(fù)載(純阻性);Rp1、Rp2和Rp3代表所有寄生電阻,建模的是互連走線、連接器和任何可能的機(jī)械或電子開(kāi)關(guān)(閉合時(shí))的電阻;Rs是電流檢測(cè)電阻。設(shè)Rp是總的寄生電阻,定義為Rp = Rp1 + Rp2 + Rp3。如果U和Rp是常數(shù),那么I在R改變時(shí)才會(huì)改變,因?yàn)镽s是常數(shù)。因此評(píng)估R的偏差只需要監(jiān)視電流即可。然而在大多數(shù)情況下,實(shí)際的U和Rp不是固定不變的。事實(shí)上,即使在常見(jiàn)的恒壓PWM電源控制應(yīng)用中,U也可能因?yàn)殡娫催^(guò)高的內(nèi)部阻抗(不良調(diào)整)和/或電壓容差而偏離期望值。寄生電阻Rp包含導(dǎo)線、連接器和開(kāi)關(guān)的電阻,它們通常會(huì)因溫度、用途和老化的原因而發(fā)生變化。舉例來(lái)說(shuō),如果開(kāi)關(guān)是功率MOSFET實(shí)現(xiàn)的,那么由于它具有正溫度系數(shù),它的Rds(ON)會(huì)隨溫度的上升而增加。
本文引用地址:http://cafeforensic.com/article/201612/326394.htm很明顯,U和Rp的變化將影響基于電流的簡(jiǎn)單電阻監(jiān)視方法的精度。為了克服這個(gè)問(wèn)題,可以在計(jì)算實(shí)際負(fù)載電阻(R)的基礎(chǔ)上進(jìn)行電阻監(jiān)視,方法是測(cè)量負(fù)載電流和負(fù)載電壓,然后根據(jù)歐姆定律計(jì)算它們相除的結(jié)果?,F(xiàn)在典型的方法是在數(shù)字域中做這種除法,它要求至少一個(gè)帶兩個(gè)復(fù)用輸入通道的模數(shù)轉(zhuǎn)換器(ADC)和一些處理單元(即微控制器)。這種方法很有吸引力,特別是當(dāng)系統(tǒng)中已經(jīng)有微控制器的時(shí)候。然而,由于可靠性或安全方面的原因,用軟件完成計(jì)算任務(wù)的這種方法可能行不通,或者根本不可取。
例如在醫(yī)療級(jí)設(shè)備中,標(biāo)準(zhǔn)IEC 60601-1(條款14)規(guī)定,如果由可編程系統(tǒng)來(lái)確保至關(guān)重要的安全性,那么開(kāi)發(fā)周期必須遵循規(guī)定的程序,這將使最終系統(tǒng)的開(kāi)發(fā)和隨后的認(rèn)證進(jìn)一步復(fù)雜化。另外一種方法是在模擬域中執(zhí)行除法操作,方法是使用精密的模擬分壓集成電路(IC)。然而,這種IC一般很昂貴,而且不很常見(jiàn)。不過(guò)在模擬域中,我們可以利用經(jīng)典的惠斯通電橋——在低功耗電阻測(cè)量中一種很著名的電路。它將是我們討論的起點(diǎn)。
在展開(kāi)討論之前,最好是將R定義為R = Rn(1+δ),其中Rn是R的歸一化值,δ是R的相對(duì)誤差,定義為δ = R/Rn – 1。另外,讓我們將閾值點(diǎn)δi 和δs定義為監(jiān)視系統(tǒng)啟動(dòng)故障條件信號(hào)點(diǎn)之外的δ值(分別對(duì)應(yīng)更差和更好)。在圖2a)中,惠斯通電橋和比較器用來(lái)產(chǎn)生邏輯信號(hào),指示R是大于還是小于某個(gè)閾值。很容易表明,這個(gè)電阻閾值獨(dú)立于U,它是這種電橋拓?fù)?/strong>的一個(gè)特性。在圖2 b)中,通過(guò)在參考支路和兩個(gè)比較器中使用一個(gè)額外的電阻(R3),可以擴(kuò)展拓?fù)洌瑢?shí)現(xiàn)阻值窗口比較器。閾值點(diǎn)δi 和δs由R1、R2和R3之間的比值設(shè)定,因?yàn)樗鼈兇_定了比較器(Ut1和Ut2)的閾值電壓。
雖然圖2 b)所示電路的閾值點(diǎn)獨(dú)立于U,但它們?nèi)匀皇茈娫捶种?圖1中所示)寄生電阻的影響。另外,比較器的共模和差分輸入電壓通常很小(R >> Rs)。事實(shí)上,期望的差分輸入電壓范圍與比較器的輸入偏移電壓(IOV)通常是相當(dāng)?shù)?,因此?huì)嚴(yán)重影響監(jiān)視系統(tǒng)的精度。
解決方案的通用模型
為了克服Rp依賴性,我們可以將電流與負(fù)載電壓進(jìn)行比較,而不是將電流與供電電壓U進(jìn)行比較。此外,我們可以在比較器之間進(jìn)行適當(dāng)?shù)碾妷赫{(diào)整,以克服比較器上很小的差分輸入電壓引起的參考精度損失問(wèn)題。這種解決方案的通用模型見(jiàn)圖3,它包括寄生電阻Rp1、Rp2和Rp3。在這個(gè)模型中,負(fù)載電壓和負(fù)載電流(表示為Rs上的電壓)在施加到比較器COMP1和COMP2輸入端之前先被同相增益級(jí)電路所調(diào)整。這些增益級(jí)電路總是用運(yùn)放(OPAMP)和增益確定電阻實(shí)現(xiàn)。
需要注意的是,只有當(dāng)這種運(yùn)放的IOV范圍比比較器的IOV更窄時(shí),才有可能減少由于很小的差分輸入電壓引起的誤差。不過(guò)這個(gè)條件不難滿足,因?yàn)榫苓\(yùn)放的IOV范圍通常都要比精密比較器小,這也是為什么在一些低速高精度應(yīng)用中將運(yùn)放用作比較器的原因。
對(duì)電流的差分測(cè)量可以轉(zhuǎn)換為更簡(jiǎn)單的單端測(cè)量,方法是將Rs下面的端子連接模擬地(電阻監(jiān)視部分的地)。圖3中的新變量被定義為:
● Gu1,Gu2:負(fù)載電壓測(cè)量的增益,通常小于1。
● Gi1,Gi2:電流測(cè)量的增益,通常大于1。
● Uu1,Uu2,Ui1,Ui2:比較器的輸入電壓(以地為參考)。
● Ud1,Ud2:比較器的差分輸入電壓,參考點(diǎn)是對(duì)應(yīng)比較器的反相輸入端(Ud1 = Uu1 – Ui1; Ud2 = Ui2 – Uu2)。
● Ut1,Ut2:COMP1和COMP2的閾值電壓。在COMP1閾值點(diǎn),Ut1 = Uu1 = Ui1, Ud1 = 0;在COMP2閾值點(diǎn),Ut2 = Uu2 = Ui2, Ud2 = 0。
模型的閾值點(diǎn)(δi, δs)由模型增益定義,見(jiàn)公式(1)。從公式(1)可以看到,閾值點(diǎn)不受U或Rp的影響,這也是我們希望看到的結(jié)果。
現(xiàn)在我們應(yīng)該把實(shí)際閾值點(diǎn)(δi, δs)和想要的閾值點(diǎn)(±T)區(qū)分開(kāi)來(lái),后者通常相當(dāng)于容差R加上一些安全余量。注意,為了簡(jiǎn)化分析,我們假設(shè)想要的閾值點(diǎn)剛好相反。通過(guò)選擇增益開(kāi)展模型調(diào)整,目的是使δi = (-T)和δs = T。基于這樣的考慮,模型增益見(jiàn)下面的公式(2)、(3)、(4)和(5)。在這些公式中,U、Ut1、Ut2和Rp的選擇對(duì)于最大限度地提高性能來(lái)說(shuō)很關(guān)鍵。這個(gè)課題后面再討論。
將這些值代入公式(2)、(3)、(4)和(5),可以算出以下這些增益:
Gu1 = 0.201986
Gu2 = 0.168134
Gi1 = 28.4800
Gi2 = 26.7333
假設(shè)增益級(jí)電路是理想的情況下,圖4和圖5分別畫(huà)出了作為δ函數(shù)的比較器輸入電壓(Uu1, Ui1, Uu2, Ui2, Ud1 和Ud2)。在圖4中,實(shí)線是U=15V時(shí)的結(jié)果,虛線是U=10V時(shí)的結(jié)果。Rp值保持不變。從圖中可以看出,閾值點(diǎn)(δi和δs)不受U變化的影響。
在圖5中,實(shí)線是Rp=10mΩ時(shí)的結(jié)果,虛線是Rp=200mΩ時(shí)的結(jié)果。在這兩種情況下,U保持不變(U=15V)。從中可以看出,δi 和δs不受Rp變化的影響。
雖然U和Rp的變化不影響δi 和δs,但它們影響比較器的單端和差分輸入電壓,見(jiàn)圖4和圖5。因此模型增益的確定應(yīng)慎重,要確保滿足比較器的共模輸入電壓范圍(CMIVR)要求。在這個(gè)例子中,假設(shè)比較器能夠?qū)崿F(xiàn)接近地電位的檢測(cè),也就是說(shuō)它們的共模輸入電壓范圍可以從0(或以下)擴(kuò)展到某個(gè)正值。在圖4 a)和圖5 a)中可以看到,在低于和高于δi 與δs時(shí),相關(guān)的輸入電壓(對(duì)δi來(lái)說(shuō)是Uu1和Ui1,對(duì)δs來(lái)說(shuō)是Uu2和Ui2)呈現(xiàn)相反的趨勢(shì)。
因此,相關(guān)輸入電壓在δi和δs處同時(shí)具有最高值,分別是Ut1和Ut2。要想比較器在δi 和δs點(diǎn)提供正確的輸出狀態(tài),Ut1和Ut2必須在它們的共模輸入電壓范圍之內(nèi)(CMIVR)。如果是這樣,相關(guān)輸入電壓可能在低于和高于δi 和δs時(shí)超出CMIVR,因?yàn)槊總€(gè)比較器至少有一個(gè)輸入電壓在CMIVR內(nèi)是有保證的,而且大多數(shù)比較器在這種情況下仍能提供正確的輸出狀態(tài)。符合工業(yè)標(biāo)準(zhǔn)的LM393就是具有這種能力的一個(gè)典型例子。從圖4 a)和圖5 a)中可以看出,Ut1和Ut2不是固定的,它們會(huì)隨著U增加和/或Rp減小而增大。
當(dāng)U位于其最大可能值、Rp位于其最小可能值(在大多數(shù)情況下可以認(rèn)為是0)時(shí),將形成在比較器CMIVR方面最差的工作條件。在計(jì)算模型增益時(shí)應(yīng)該將這些U和Rp值代入公式(2)、(3)、(4)和(5)。
比較器的輸入偏移電壓(IOV)有可能導(dǎo)致δi 和δs閾值點(diǎn)偏離期望值,并降低電阻監(jiān)視的精度。為了盡可能減小這種漂移幅度,我們應(yīng)該盡可能增加分別對(duì)應(yīng)δi 和δs的Ud1和Ud2斜率模(絕對(duì)值),如圖4 b)和圖5 b)所示。
另外觀察圖4 a)和圖5 a)可以看出,通過(guò)增加Ut1和Ut2也可以減小這種漂移。考慮到前面討論的共模輸入電壓范圍(CMIVR)限制,我們可以得出結(jié)論:應(yīng)選擇接近CMIVR上限的Ut1和Ut2電壓值,并留一些安全余量應(yīng)對(duì)實(shí)際元件的容差和漂移。選好Ut1和Ut2后,就可以將它們與T、Rn、Rs、U (最大值) 和Rp (最小值)一起代入增益公式((2), (3), (4), (5))計(jì)算模型增益,完成模型的調(diào)整。
相反,當(dāng)Ud1和Ud2斜率模減小時(shí),由于輸入偏移電壓(IOV)引起的閾值點(diǎn)漂移將變得更糟,見(jiàn)圖4 b)和圖5 b)。從這些圖還可以看出,這些模值隨U的減小和/或Rp的增加而減小。因此最差精度損失發(fā)生在最低期望的U值和最高期望的Rp值時(shí)??傊蒊OV引起的精度損失行為可以被總結(jié)為:針對(duì)某個(gè)特定的比較器IOV范圍,為了滿足特定的精度要求,必須重視相應(yīng)的最小U值和最大Rp值。
也可能在一些特殊情況下,U=0和/或Rp → (+∞)。符合這些情況的例子包括U供電電源的關(guān)斷或故障、保險(xiǎn)絲熔斷、PWM應(yīng)用中功率開(kāi)關(guān)的開(kāi)路等。在發(fā)生這些事件時(shí),所有比較器的輸入電壓將接近于0,輸出信號(hào)(Fault)將沒(méi)有統(tǒng)一的狀態(tài)。此時(shí)Fault應(yīng)被忽略,或被某些額外的檢驗(yàn)電路關(guān)閉。
請(qǐng)注意,有關(guān)模型調(diào)整和性能的上述結(jié)論不是專門(mén)在分析圖4和圖5基礎(chǔ)上得出來(lái)的。這些結(jié)論實(shí)際上基于的是對(duì)模型的數(shù)學(xué)分析,本文只提供了一些重要的設(shè)計(jì)公式。
除了比較器的輸入偏移電壓(IOV)外,監(jiān)視的精度還受電流檢測(cè)電阻(Rs)的容差以及增益級(jí)電路的誤差(包括運(yùn)放的IOV、增益確定電阻(只有標(biāo)準(zhǔn)值電阻)偏離理想值的幅度以及電阻容差)的影響。鑒于誤差源有很多,監(jiān)視的有效精度最好通過(guò)對(duì)整個(gè)系統(tǒng)執(zhí)行Monte-Carlo分析進(jìn)行評(píng)估。大多數(shù)SPICE仿真器都提供這種分析方法。
評(píng)論