色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 基于直流電壓前饋控制數(shù)字逆變電源設(shè)計與實現(xiàn)

          基于直流電壓前饋控制數(shù)字逆變電源設(shè)計與實現(xiàn)

          作者: 時間:2016-12-07 來源:網(wǎng)絡(luò) 收藏

            1 引言

          本文引用地址:http://cafeforensic.com/article/201612/327443.htm

            逆變電源一般采用瞬時反饋控制技術(shù)來提高逆變電源的動態(tài)響應(yīng)速度,減少輸出電壓的諧波含量,改善輸出電壓波形的質(zhì)量。常見的逆變電源控制技術(shù),有重復(fù)控制、諧波補償控制、無差拍控制、電壓瞬時值控制和帶電流內(nèi)環(huán)的電壓瞬時值控制等類型。其中,帶電流內(nèi)環(huán)電壓瞬時值環(huán)路的雙環(huán)控制方法因?qū)崿F(xiàn)簡單,系統(tǒng)動態(tài)性能優(yōu)越和對負載的適應(yīng)性強等優(yōu)點,而逐漸成為高性能逆變電源的發(fā)展方向之一。但傳統(tǒng)控制方法是基于逆變電源直流側(cè)輸入電壓為無脈動直流電壓的假定,而實際逆變電源,存在因電網(wǎng)電壓波動或負載突變而導(dǎo)致直流側(cè)電壓波動的現(xiàn)象。直流輸入電壓波動會引起逆變器開環(huán)增益波動,進而影響輸出電壓質(zhì)量。在傳統(tǒng)雙環(huán)控制的基礎(chǔ)上,增加輸出電壓有效值反饋環(huán)的三環(huán)控制策略,在一定程度上消除了直流輸入電壓波動導(dǎo)致的輸出電壓穩(wěn)態(tài)誤差,但有效值環(huán)對輸出電壓變化的響應(yīng)速度較慢,控制過程復(fù)雜。

            此外,正弦脈寬調(diào)制逆變電源開關(guān)管工作在硬開關(guān)狀態(tài)下,將產(chǎn)生大量的高次諧波,使變換器及負載的損耗加大,設(shè)備使用壽命降低,甚至可能引發(fā)并聯(lián)或串聯(lián)諧振,損壞電氣設(shè)備以及干擾通信線路的正常工作。軟開關(guān)技術(shù)是克服以上缺陷的有效方法之一。采用HPWM調(diào)制可實現(xiàn)ZVS軟開關(guān)技術(shù),在不增加硬件和改變變換器拓撲的前提下,可利用現(xiàn)有元器件和開關(guān)管的寄生參數(shù),創(chuàng)造逆變橋開關(guān)管ZVS軟開關(guān)條件,從而最大限度地實現(xiàn)ZVS。

            本文針對直流側(cè)電壓擾動時雙環(huán)控制逆變電源的輸出電壓波形發(fā)生畸變、幅值發(fā)生變化的現(xiàn)象,提出了通過輸入電壓前饋控制環(huán)來修正基準正弦信號的幅值,從而改善逆變電源輸出電壓質(zhì)量的三環(huán)控制方法。同時,借助于DSP強大的運算能力和豐富的外設(shè),實現(xiàn)HPWM逆變電源的數(shù)字控制,從而簡化了硬件電路。仿真結(jié)果表明,本文所提出的控制策略簡單實用,可有效地提高逆變電源在直流輸入電壓擾動下的動態(tài)性能和穩(wěn)態(tài)精度,并降低了輸出電壓的總諧波。

            2 逆變電源系統(tǒng)建模

            單相全橋逆變電源的主電路結(jié)構(gòu)如圖1所示,直流輸入電壓Ud經(jīng)逆變橋后得到脈沖輸出電壓Ui,再經(jīng)LC濾波后得到正弦輸出電壓Uo。

            由逆變橋平均值模型可知:當三角載波頻率fc遠高于輸出正弦波基頻f時,逆變橋輸出電壓Ui在一個載波周期Tc的平均值 ,可近似看成輸出電壓基波分量的瞬時值Ui1,即

            式中:Ud為直流輸入電壓;UCm為三角載波幅值。令kPWM=Ud/UCm表示正弦調(diào)制信號經(jīng)過逆變橋的增益,因Ud變化而引起的kPWM變化定義為干擾變量。基于電壓瞬時值外環(huán)和電容電流內(nèi)環(huán)的雙環(huán)控制系統(tǒng)如圖2所示。電壓瞬時值外環(huán)采用PI調(diào)節(jié),電容電流內(nèi)環(huán)采用P調(diào)節(jié)。開關(guān)頻率為20kHz,根據(jù)轉(zhuǎn)折頻率ωn1=ωc/10、阻尼系數(shù)ξ=0.3,可得輸出濾波器參數(shù)[3]為:L=670μH、C=47μF??刂破鞯姆抡鎱?shù)為:Kv=0.0015,Ki=0.05,kvp=0.098,kvi=350,kip=20。

            圖2 逆變電源雙環(huán)控制框圖

            考慮逆變電源對輸入電壓擾動的瞬態(tài)響應(yīng)性能,令Uref=0,io=Uo/R,則可得出輸出電壓Uo對直流電壓擾動Δu的傳遞函數(shù):

            由式(2)可知,系統(tǒng)對直流輸入電壓階躍響應(yīng)的調(diào)節(jié)時間Ts為5ms。因此,當逆變電源輸出電壓頻率為400Hz時,系統(tǒng)的調(diào)節(jié)時間持續(xù)兩個正弦周期,但因響應(yīng)峰值較小,對輸出電壓波形不會造成明顯影響。而當逆變電源輸出電壓頻率為50Hz時,響應(yīng)峰值集中出現(xiàn)在1/4正弦周期內(nèi),使輸出電壓波形出現(xiàn)失真。

            3 直流電壓前饋控制原理

            由以上分析可知,雙環(huán)反饋控制逆變器,對直流輸入電壓變化的調(diào)節(jié)有一定的滯后性和穩(wěn)態(tài)誤差。為此,本文提出用輸入電壓前饋環(huán)實時檢測直流輸入電壓,對逆變橋增益kPWM進行補償,抵消直流輸入電壓Ud波動對逆變電源的影響。因此,在傳統(tǒng)雙環(huán)控制系統(tǒng)中,額定直流輸入電壓U*d除以采樣得到的直流輸入電壓Ud,再與經(jīng)雙環(huán)校正的正弦信號ugm相乘后得到調(diào)制信號u′gm,將其送入PWM發(fā)生器,如圖3所示。

            圖3 逆變電源直流電壓前饋控制原理圖

            將調(diào)制信號ugm(t)=U′gmsinωt代入(1)式中可得:

            其中:m′=U′gm/UCm即為補償后的調(diào)制比。為了保證直流電壓的利用率,系統(tǒng)需要保持很高的調(diào)制度,即m接近于1,也即Ugm接近于UCm。

            4 HPWM調(diào)制原理

            混合式脈寬調(diào)制方式(HPWM)實質(zhì)為單極性SPWM調(diào)制方式,其工作時每半個輸出電壓周期切換,即同一個橋臂的開關(guān)管,在前半個工頻周期內(nèi)工作在低頻,而后半個工頻周期內(nèi)工作在高頻,從而克服傳統(tǒng)單極性控制方式下,總是一個橋臂工作的開關(guān)管同時工作在高頻狀態(tài)的缺陷,提高了開關(guān)管的使用壽命和系統(tǒng)可靠性。

            逆變電源工作在HPWM軟開關(guān)方式下的輸出電壓,在一個開關(guān)周期內(nèi)有12種工作狀態(tài)?;谳敵鲭妷赫摪胫芄ぷ鳡顟B(tài)的對稱性,以輸出電壓正半周期為例,分析單相全橋逆變電源一個開關(guān)周期內(nèi)的6種工作模態(tài),如圖4所示。

            圖4 HPWM逆變電源工作模態(tài)圖

            從t0到t1時刻逆變電源工作在模式A狀態(tài)下。開關(guān)管S1和S4導(dǎo)通,電路為正電壓輸出模式,濾波電感電流線性增加,直到t1時刻S1關(guān)斷為止。

            從t1到t2時刻逆變電源工作在模式B狀態(tài)下。在t1時刻,S1關(guān)斷,濾波電感電流從S1中轉(zhuǎn)移到C1和C3支路,給C1充電的同時給C3放電。由于C1、C3的存在,S1工作在零電壓關(guān)斷狀態(tài)下。由于該狀態(tài)持續(xù)時間很短,可以認為濾波電感電流近似不變,等效為恒流源,則C1兩端電壓線性上升,C3兩端電壓線性下降。到t2時刻,C3電壓下降到零,S3的體二極管D3自然導(dǎo)通,電路模式B工作結(jié)束。

            從t2到t3時刻逆變電源工作在模式C狀態(tài)下。 D3導(dǎo)通后開通S3,所以S3為零電壓開通。此時電流由D3向S3轉(zhuǎn)移,S3工作于同步整流狀態(tài)。電流由S3流過,使電路處于零態(tài)續(xù)流狀態(tài),電感電流線性減小,直到t3時刻減小到零。在此期間,要保證S3實現(xiàn)ZVS,則S1關(guān)斷和S3開通之間需要死區(qū)時間tdead1,并且滿足以下要求:

            從t3到t4時刻逆變電源工作在模式D狀態(tài)下。在此模式下濾波電感Lf兩端電壓為-U0,電感電流開始由零向負方向增加,電路處于零態(tài)儲能狀態(tài),S3中的電流也相應(yīng)由零正向增加,到t4時刻S3關(guān)斷,結(jié)束D模式。

            從t4到t5時刻逆變電源工作在模式E狀態(tài)下。此模式狀態(tài)與模式A近似,S3關(guān)斷,C3充電C1放電,同理S3為零電壓關(guān)斷。t5時刻,C1的電壓降到零,二極管D1自然導(dǎo)通,進入下一電路模式F,

            從t5到t6時刻,在D1導(dǎo)通后,開通S1,則S1為零電壓開通。電流由D1向S1轉(zhuǎn)移,S1工作于同步整流狀態(tài),電路處于正電壓輸出狀態(tài)回饋模式,電感電流負向減小,直到減小到零。之后,輸入電壓正向輸出給電感儲能,回到初始模式A,開始下一開關(guān)周期。同理,要保證S1零電壓開通,則S3關(guān)斷和S1開通之間需要死區(qū)時間tdead2,同時滿足:tdead2>2CeffUd/I0,需要注意的是一般有I1>I0,因此得出tdead2>tdead1。

            5 仿真實驗結(jié)果分析

            利用Matlab/Simulink對本文設(shè)計的逆變電源電路進行了仿真驗證,并采用上述原理,研制了實驗樣機以驗證方案可行性。參數(shù)如下:直流輸入電壓Ud為400V±20%,額定輸出電壓Uo幅值為310V,輸出功率1kVA,三角調(diào)制波頻率為10kHz,幅值為1V,調(diào)制比0.8,THD 。

            圖10為當輸出50Hz交流時,Ud波動的情況下,傳統(tǒng)雙環(huán)控制逆變電源和本文研究的逆變電源的輸出電壓波形。由圖10可以看出,傳統(tǒng)雙環(huán)控制,因控制器調(diào)節(jié)較慢而導(dǎo)致輸出電壓波形失真,而本文研究的逆變電源輸出電壓波形保持良好,明顯提高了系統(tǒng)對直流輸入電壓擾動的瞬態(tài)響應(yīng)性能。

            (a)

            (b)

            圖5 直流電壓波動后的輸出電壓波形:(a) 傳統(tǒng)雙環(huán)控制;(b) 前饋電壓控制

            實驗測得開關(guān)管1和開關(guān)管4的驅(qū)動波形如圖6所示。由圖可以看出,開關(guān)管工作在HPWM調(diào)制方式

            阻性半載下輸出電壓波形如圖7所示,阻性滿載下輸出電壓波形如圖8所示。由圖7和圖8可以看出,負載從半載到滿載變化時,輸出電壓的失真度較小,輸出電壓的幅值變化不大,系統(tǒng)具有良好的穩(wěn)壓輸出。

            圖7 阻性半載下輸出電壓波形

            圖8 阻性滿載下輸出電壓波形

            6 結(jié)論

            在深入分析傳統(tǒng)雙環(huán)控制逆變電源對直流輸入電壓擾動響應(yīng)性能的基礎(chǔ)上,提出了利用輸入電壓前饋控制環(huán)來消除直流輸入電壓波動對逆變電源性能的影響。本文利用DSP芯片的強大功能,實現(xiàn)了數(shù)字式HPWM逆變電源的設(shè)計,采用HPWM的控制方式以不對稱規(guī)則采樣法,有效地抑制了系統(tǒng)的諧波分量;同時4個開關(guān)管分別實現(xiàn)了軟開關(guān)控制,降低了開關(guān)損耗,提高了電路效率。仿真實驗結(jié)果證明,加輸入電壓前饋補償環(huán)的逆變電源對直流輸入電壓擾動有很好的靜態(tài)和動態(tài)性能。



          評論


          技術(shù)專區(qū)

          關(guān)閉