測(cè)量數(shù)據(jù)舍入算法
圖1
本文引用地址:http://cafeforensic.com/article/201701/337868.htm關(guān)于舍入算法有多種,主要有Round Toward Nearest、Round Ceiling、Round Floor和Truncation:
Round Toward Nearest
Rounding Toward Nearest就是通常所說(shuō)的“四舍五入”,以5為有符號(hào)數(shù)為例,高3位為整數(shù)位(包含最高位符號(hào)位),低2位為小數(shù)位。如圖2所示,對(duì)5為有符號(hào)二進(jìn)制數(shù)進(jìn)行了舍入處理,舍去小數(shù)位,其中小數(shù)位大于0.5,整數(shù)位進(jìn)1,小于0.5時(shí)不進(jìn)位,而等于0.5時(shí),舍入后數(shù)據(jù)打了問(wèn)號(hào),因?yàn)閷?duì)于0.5的舍入處理,又可分為4種處理算法:
(1). Round Half Up;(2). Round Half Down;(3). Round Half Even;(4). Round Half Odd
并且以上第(1)、(2)種算法對(duì)應(yīng)分別有對(duì)稱(Symmetric)和非對(duì)稱(Asymmetric)2類。
圖2
(1). Round Half Up
Round Half Up算法對(duì)于0.5的舍入處理為向上取值,因此此例中整數(shù)位進(jìn)1,而這僅對(duì)正數(shù)部分而言,對(duì)于負(fù)數(shù)部分可按照相對(duì)于0對(duì)稱與否分為2類,如圖3所示。
圖3
(2). Round Half Down
Round Half Down算法對(duì)于0.5的舍入處理為向下取值,因此此例中整數(shù)位不進(jìn),而這僅對(duì)正數(shù)部分而言,對(duì)于負(fù)數(shù)部分可按照相對(duì)于0對(duì)稱與否分為2類,如圖4所示。
圖4
(3). Round Half Even
Round Half Even算法根據(jù)有效位來(lái)判斷是否進(jìn)位,在此例中,舍去小數(shù)位,因此判斷整數(shù)位即可,如果整數(shù)位為偶數(shù),則不進(jìn)位,奇數(shù)則進(jìn)位,因此舍入處理后整數(shù)位肯定是個(gè)偶數(shù)。如圖5所示,可以發(fā)現(xiàn)Round Half Even必然是Symmetric算法。
評(píng)論