色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 設計應用 > 仿真采用數字預失真的Doherty放大器

          仿真采用數字預失真的Doherty放大器

          作者: 時間:2017-06-03 來源:網絡 收藏

          可 以在很寬的動態(tài)范圍內輸出功率,并且具有很高的效率和卓越的線性度。由載波和峰值放大器組成,兩者通過四分之一波長的傳輸線鏈 接在一起。載波放大器通常針對線性工作進行偏置(例如A類或AB類放大器),而峰值放大器一般針對非線性工作進行偏置(例如C類放大器)。隨著輸入功率的 增加,峰值放大器逐漸導通,從而增強載波放大器輸出的功率。如果設計正確,放大器的總功率將得到提升,而且具有更好的線性性能和效率。

          本文引用地址:http://cafeforensic.com/article/201706/347588.htm

          隨著功放設計師追求高效率和低相鄰通道功率比(ACPR),使用(DPD)改善線性度正變得越來越流行。為了演示放大器的設計,本文將討論利用AWR公司的Microwave Office電路設計軟件完成的典型設計。設計的關鍵是如何正確地解決晶體管中的各種非線性問題。

          這種放大器的設計和構建基礎是恩智浦公司的晶體管技術。放大器的工作點和最優(yōu)負載將用標準的拉負載技術確定。電磁(EM)將 用于建模放大器版圖的關鍵部分,其中,低阻抗輸出匹配部分帶寬非常寬,封閉式模型可能并不準確。需要特別指出的是,輸出部分將用AWR公司的平面電磁 器AXIEM進行。雖然用于建模Doherty放大器的主要電路仿真器是諧波平衡軟件,但本文還是會討論到許多其他的仿真選擇(包括電路包絡仿真的使用)。

          Doherty放大器可以為功率很重要的應用提供很高的功率附加效率(PAE),比如蜂窩基站應 用。Doherty放大器最早是貝爾電話實驗室的William H.Doherty于1936年發(fā)明的。這么多年來設計的細節(jié)已經發(fā)生了改變——包括其從真空管到作為有源器件的晶體管的演進——但基本概念一直沒變。近年來Doherty放大器變得越來越流行,因為它們能夠處理較大的峰均比信號,而這一點是無線應用中的典型要求。

          圖1顯示了常見的Doherty放大器拓撲結構,其中的關鍵是兩個并聯的放大器。上面的放大器偏置在AB類狀態(tài)下,而下面的放大器工作在C類。AB類放大器是設計作為線性放大器工作的,因此具有非常低的失真。遺憾的是,它的效率不高,理論上最大效率約為78.5%。


          圖1:這張簡單的框圖展示了Doherty放大器的拓撲結構。并聯使用AB類和C類放大器可以提高功效

          。

          注意,AB類放大器的效率要高于A類放大器,因為兩個晶體管是并聯使用的,并且偏置使得每個放大器導通50%的時間。B類偏置是AB類偏置狀態(tài)的有限情況。 在AB類狀態(tài)下,設置偏置是使晶體管導通具有稍微重疊的區(qū)域。這樣可以最大限度地減小交越失真的問題——交越失真是一種晶體管導通所需非零壓降導致的性能下降。

          C類放大器用作電路中的峰值放大器。在C類放大器被偏置的條件下,只有當非零輸入功率超過預定義的輸入閾值時晶體管才會導通。因此C類放大器的效率 很高,但具有高度非線性特性。Doherty放大器的理念是在低功率時使用AB類放大器,在較高功率時C類放大器也提供輸出功率。有意義的是,在較高功率 電平時這可以提高PAE。需要注意的是,電路包含兩個在工作頻率下四分一波長的匹配部分。這兩個部分是必要的,因為放大器的輸入阻抗一直在變化,在所有功 率電平范圍內保持整個電路完美匹配非常重要。

          本文所描述的Doherty放大器是基于恩智浦公司的晶體管實現的。圖2顯示了 Doherty放大器電路的高層次概念原理圖和版圖。從圖中可以清楚地看到典型Doherty放大器的各個部分。舉例來說,版圖顯示了AB類(圖2上面) 和C類(圖2下面)放大器。在預期的工作點饋線相差90度。


          圖2:左圖是Doherty放大器的頂層原理圖,右圖是兩個放大器的版圖。

          上述Doherty放大器是在Microwave Office軟件的輔助下設計的,使用了針對這類電路的標準設計方法。這里運用了拉負載仿真來確定實際的輸入輸出負載——這是確定阻抗匹配網絡的第一步。圖3顯示了一個典型的拉負載曲線圖。


          圖3:這些拉負載仿真結果展示了恒定輸出功率曲線(藍色曲線)和PAE曲線(紫色曲線)。紅色圓圈代表最大輸出功率時的負載點;綠色方框代表最大功效時的負載點。

          藍色曲線是在輸出負載變化時恒定輸出功率曲線。紫色曲線繪出了給定輸出負載條件下的PAE。當(歸一化)負載位于紅色圓圈時達到最大輸出功率。當負載位于綠色方框時達到最大PAE。幸運的是,方框和圓圈位于基本相同的負載處,從2Ω到2.5Ω。輸出匹配網絡如圖4所示。


          圖4:輸出匹配網絡最初是使用傳輸線模型設計的,如左邊的原理圖所示。生成的版圖使用AWR公司的平面電磁仿真器AXIEM進行了仿真。

          最初的Doherty放大器設計是用標準傳輸線模型創(chuàng)建的。然而,這些模型不足以提供低阻抗匹配網絡所需的極端長寬比指標。由于線路變得非常寬,模型精度會降低。因此版圖的仿真采用了非常適合平面版圖的平面電磁仿真器AXIEM。

          圖4的右半部分顯示了網格狀的電磁版圖。這個版圖經過了顏色編碼處理,以便顯示各種形狀的直流連接特性。需要著重指出的是,沒有必要將放大器版圖手動輸出到 電磁放大器,而是可以使用AWR公司的電磁提取技術輕松地將電路版圖的目標部分發(fā)送到電磁仿真中,端口可以在那里自動添加。仿真得到的S參數結果用在了放 大器原理圖中而不是模型中,因此可以得到更精確的解決方案。

          接著用AWR公司的諧波平衡仿真技術進行電路建模。圖5顯示了晶體管的直流偏置線以及組成Doherty放大器的AB類和C類放大器的動態(tài)負載線。紫色曲線是AB類放大器的動態(tài)負載線,而綠色曲線是C類放大器的負載線。


          圖5:上面是Doherty放大器的晶體管在不同電壓(a,b,c)時的偏置線和動態(tài)負載線。紫色曲線是AB類放大器的,綠色曲線是C類放大器的。隨著輸入功率增加,C類放大器開始導通。

          從 圖中可以看到,輸入功率從+26dBm增加到+40dBm;C類放大器導通,促使輸出電平增加。(注意:負載線包括封裝寄生效應,這正是有負電壓與電流值 的原因。)圖6顯示了完整放大器的輸出功率(藍色曲線和左軸)和PAE(紫色曲線和右軸)。效率增加到約56%,這要比單獨使用AB類放大器或C類放大器 高出約7%。


          圖6:這些曲線顯示了Doherty放大器的輸出功率(藍色曲線和左軸)和PAE(紫色曲線和右軸)。

          通 過校正系統(tǒng)中的各種非線性和失配還可以進一步提高放大器的性能。有幾種方法可以做到這一點。本文介紹的方法對于使用的現代移動編碼方案特別管 用。這種技術可以增加放大器線性工作的范圍,從而減小失真。該分析使用了AWR公司的Visual System Simulator(VSS)軟件。


          圖7:這是VSS中建模的放大器的校正拓撲。輸入功率用I/Q表格值進行校正,然后通過整合提供校正后的結果。

          VSS使用放大器的非線性系統(tǒng)模型來判斷整個系統(tǒng)的響應。建模方法是用未校正過的放大器仿真同相/正交(I/Q)值,然后在VSS仿真器內創(chuàng)建校正 表格,如圖7所示。校正因子針對各種輸入電壓計算出,創(chuàng)建想要的輸出。輸入功率乘以校正過的I/Q表格值。一旦計算出表格,它們就可以編程進放大器的控制 電路。這些表格不需要改變,除非放大器的工作狀態(tài)發(fā)生改變,這時才需要重新計算。


          圖8:這是完整的VSS系統(tǒng),使用的是完全符合規(guī)范的LTE輸入信號。

          圖 8顯示了完整的系統(tǒng)級分析,其中使用了完全符合規(guī)范的測試信號。在該評估中使用了長期演進(LTE)蜂窩信號。圖9展示了放大器性能的改善,由頻譜中的三 個信道表明。校正過的信號(紅色曲線)與未校正系統(tǒng)(藍色曲線)相比,減小了本底噪聲。圖10顯示了校正過的AM-AM和AM-PM曲線。從圖中可以看出 顯著的改進:校正過的放大器輸出功率增加了3dB,而且?guī)缀跸薃M-PM失真。


          圖9:Doherty放大器的輸入信道用藍色曲線表示。圖中顯示了未校正(紫色曲線)和校正過(紅色曲線)的結果。本底噪聲降低了20dB。


          圖10:這些圖顯示了未校正和校正過的放大器的AM-AM和AM-PM測量結果。相位失真通過校正改善了30度,而輸出功率增加了3dB。

          本例至此使用了諧波平衡建模作為電路仿真方法。不過AWR公司提供了第二種方法來仿真電路,即電路包絡仿真。雖然簡單高效,但諧波平衡技術有它自己 的缺點。特別是它不能建模存儲效應,只能仿真穩(wěn)態(tài)性能。在本例的VSS中執(zhí)行的系統(tǒng)仿真使用的是基于放大器AM-AM和AM-PM特性的非線性行為模型。 它并沒有考慮存儲效應或電路級問題,比如偏置網絡中的電流。

          另一方面,包絡仿真是一種電路級仿真方法,仿真時間要比諧波平衡長,但支持仿真存儲效應。圖11顯示了一個可能結果類型的例子(這個例子中使用了英飛凌制造的功放)。紅色(非線性特性)和綠色(包絡仿真)曲線有少許差異。頻率的少許偏移是存儲效應的特性。


          圖11:這張曲線圖顯示了多載波系統(tǒng)的頻譜。

          橙色曲線是經過校正過的放大器,結果表明有明顯的改善。輸入信號用藍色表示,傳統(tǒng)非線性特性模型用紅色表示,包絡仿真用綠色表示,數字預失真電路 用橙色表示。由于包絡仿真是一種基于電路的仿真器,它也能顯示電路中各個點隨時間改變的電流和電壓。

          總之,使用諸如 AWR公司Microwave Office的商用化電路仿真器可以簡化基于數字預失真的Doherty放大器的設計,特別是當將電磁仿真用作建模過程的一部分時。另外,數字預失真網絡 是在VSS軟件中創(chuàng)建的,這有助于放大器性能的改善(圖9和圖10)。正如文中提到的那樣,設計這種放大器可以采用許多不同的仿真方法,也就是說,不同的 程序針對不同的工作條件和效應,而且仿真時間也可能不同。



          評論


          相關推薦

          技術專區(qū)

          關閉