超高頻RFID標簽芯片基帶處理器的低功耗設計
射頻識別技術(shù)已被應用到許多領(lǐng)域,如護照、交通運輸、產(chǎn)品追蹤、汽車以及動物識別等[1]。主要組成部分有: 電子標簽、RFID閱讀器和后端處理系統(tǒng)。RFID電子標簽由一個微小的標簽芯片和天線構(gòu)成[2],標簽芯片由模擬前端、EEPROM和數(shù)字基帶部分三部分組成。模擬前端電路除了具有收發(fā)RF信號功能外,還負責給整個芯片提供電源、時鐘和復位信號;EEPROM用于存儲標簽的唯一識別代碼和用戶數(shù)據(jù)信息;數(shù)字基帶部分負責完成通信協(xié)議的處理、 抗沖突控制、安全認證、CRC校驗和收發(fā)控制等工作, 占整個標簽芯片的成本和功耗的主要部分[3]。
由于RFID標簽芯片及其控制器要求具有低成本、低功耗的特性[4],因此本文提出一種符合ISO18000-6B協(xié)議,并滿足低成本、低功耗要求的高頻RFID標簽芯片數(shù)字基帶處理器的設計。
1 數(shù)字系統(tǒng)結(jié)構(gòu)圖
根據(jù)ISO18000-6B協(xié)議,從閱讀器到應答器的數(shù)據(jù)傳送通過對載波的幅度調(diào)制(ASK)完成,數(shù)據(jù)編碼為通過生成脈沖創(chuàng)建的曼徹斯特碼編碼,速率為40 kb/s;標簽返回給閱讀器的數(shù)據(jù)通過FM0編碼調(diào)制后發(fā)送至模擬前端, 經(jīng)由天線發(fā)送至閱讀器。
所設計的數(shù)字系統(tǒng)結(jié)構(gòu)圖如圖1所示,主要完成以下功能:(1)對前向鏈路解調(diào)輸出信號進行曼徹斯特碼解碼,給出解碼輸出時鐘,解析出再同步信號;(2)對解碼出的數(shù)據(jù)進行CRC 校驗, 確認數(shù)據(jù)傳輸和標簽解調(diào)的正確性,并且同時對解碼輸出數(shù)據(jù)進行串并轉(zhuǎn)換,以及解析出正確的命令;(3)根據(jù)ISO18000-6B協(xié)議的全部功能要求對接收的指令進行正確處理;(4)根據(jù)協(xié)議的要求對存儲器進行正確讀寫操作;(5)對處理完畢的數(shù)據(jù)進行組織,生成CRC校驗碼;(6)對回送數(shù)據(jù)進行FMO編碼,回送給射頻模擬前端進行調(diào)制。
在設計中,有限狀態(tài)機的設計是數(shù)字部分設計的核心,其功能是協(xié)調(diào)模塊之間數(shù)據(jù)與信號交互、處理接收到的指令及其相應的數(shù)據(jù)、轉(zhuǎn)換自身狀態(tài)、執(zhí)行對碰撞計數(shù)器和靜默計數(shù)器的操作、執(zhí)行對存儲器的讀寫存儲操作、規(guī)定反向散射標簽的64位UID以及MTP存儲器內(nèi)容,并和外圍模塊電路一起構(gòu)成防碰撞電路,實現(xiàn)防碰撞算法。
2 低功耗設計
電路中耗散的能量可以分為靜態(tài)功耗和動態(tài)功耗。形成靜態(tài)功耗的主要原因是晶體管中從源極到漏極的亞閾值泄漏,就是指閾值電壓的降低阻止了柵的關(guān)閉。動態(tài)功耗分為開關(guān)功耗和內(nèi)部功耗。開關(guān)功耗是由于器件輸出端的負載電容的充放電引起的。負載電容包括了門和線的電容。內(nèi)部功耗指在器件內(nèi)部耗散的能量,主要由瞬時短路所引起。
數(shù)字部分實現(xiàn)低功耗,可以從系統(tǒng)級和RTL代碼級兩方面考慮。本設計中采取降低功耗的有效措施包括:降低電源電壓,降低時鐘頻率,門控時鐘技術(shù),組織模塊的設計方法。
2.1 同步化不同時鐘的設計方案
當系統(tǒng)中有兩個或兩個以上不同時鐘時,數(shù)據(jù)的建立和保持時間很難得到保證,會面臨復雜的時間問題。最好的方法是將不同的時鐘同步化,由于標簽數(shù)字基帶電路中的編碼器設計中需要編碼輸入時鐘160 kHz和編碼輸出時鐘320 kHz,所以不同的觸發(fā)器使用不同的時鐘。為了系統(tǒng)穩(wěn)定,用系統(tǒng)時鐘1.28 MHz將160 kHz和320 kHz時鐘同步化,如圖2所示。1.28 MHz的高頻時鐘將作為系統(tǒng)時鐘,輸入到所有觸發(fā)器的時鐘端。160 MHz _EN和320 MHz_EN將控制所有觸發(fā)器的使能端。即原來接160 MHz時鐘的觸發(fā)器,接1.28 MHz時鐘,同時160 MHz_EN將控制該觸發(fā)器使能 ,原接320 MHz時鐘的觸發(fā)器,也接1.28 MHz時鐘,同時320 MHz_EN將控制該觸發(fā)器使能。這樣就可以滿足編碼器的時鐘同步要求。
圖2為同步化不同時鐘的電路設計方案。
2.2 降低電源電壓
動態(tài)功耗和電源電壓的平方成正比,故降低電源電壓是減少功耗的有效辦法,但是降低供電電壓,會帶來很多副作用:首先,降低供電電壓,會導致速度下降,減小電容充放電的電流或負載驅(qū)動電流;其次,會導致較低的輸出功率或較低的信號幅度,從而產(chǎn)生噪聲和信號衰減的問題。研究表明:降低閥值電壓,可以使得動態(tài)功耗減少,但會增大靜態(tài)功耗??紤]到數(shù)字控制部分和存儲器的功能,Vdd=1 V是達到較小的動態(tài)和靜態(tài)功耗的一個很好的折中電壓。
設計中采用的是臺積電提供的0.18 μm數(shù)字標準單元,標準工作電壓為0.9 V~1.1 V。而EEPROM工作電壓為0.9 V~1.2 V@讀數(shù)據(jù)/1.8 V@寫數(shù)據(jù),所以進行寫操作時需要用到電平轉(zhuǎn)換將1.0 V轉(zhuǎn)換到1.8 V的電壓,以便進行數(shù)據(jù)的交互。
2.3 門控時鐘的設計
為了降低芯片的功耗,設計中使用了門控時鐘:用使能信號控制寄存器的時鐘端,當使能信號有效時時鐘翻轉(zhuǎn),否則時鐘保持在固定電平。因此時鐘使能可以將電路中的部分電路處于空閑狀態(tài),阻止寄存器內(nèi)部翻轉(zhuǎn)和寄存器之間組合邏輯開關(guān)動作,以達到節(jié)省功耗的目的。圖3所示為門控時鐘的設計方案。
表1給出利用綜合工具Design Compiler對當前設計進行綜合后的功耗和面積報告??梢钥闯觯驹O計使用門控時鐘后,總的動態(tài)功耗降低了很多,并且在降低功耗的同時,面積也有了一定的減小。
2.4 組織模塊設計方法
由于在設計中并不是所有的模塊都同時工作,而是在某一個狀態(tài)下,只開啟一個或幾個模塊,其他模塊處于關(guān)閉狀態(tài),所以如果有效組織模塊的開關(guān),將會減少寄存器的開關(guān)翻轉(zhuǎn)動作。設計中利用有限狀態(tài)機根據(jù)不同的指令和狀態(tài)轉(zhuǎn)換開啟不同的模塊來完成數(shù)據(jù)的處理要求和存儲操作:當接收前向數(shù)據(jù)時,開啟編碼器、CRC計算/校驗、和串并轉(zhuǎn)換;當處理數(shù)據(jù)時,開啟模塊有限狀態(tài)控制機、EEPROM控制模塊、靜默計數(shù)器、隨機數(shù)產(chǎn)生器;當返回數(shù)據(jù)時,開啟模塊有限狀態(tài)控制機、EEPROM控制模塊、數(shù)據(jù)輸出控制端、編碼器其他模塊關(guān)閉。由于每個模塊在某個狀態(tài)下才開啟,其他狀態(tài)下關(guān)閉,故減少了不必要的開關(guān)動作,從而有效降低了功耗。
3 芯片測試
首先采用FPGA完成芯片的功能驗證,以FPGA的可編程邏輯陣列為基本單元,實現(xiàn)ISO18000-6B的數(shù)字基帶功能的硬件仿真驗證。然后使用ASIC芯片設計EDA工具將RTL頂層描述映射為基于TSMC提供的目標工藝庫的基本數(shù)字單元的物理電路,并生成CAD版圖且提交給TSMC半導體工廠制作出來。
進行芯片測試時,利用先施閱讀器產(chǎn)生RFID各種命令信號,經(jīng)解調(diào)后輸入到待測試芯片的數(shù)據(jù)輸入端。芯片在電源、時鐘源信號、復位信號的共同激勵下進入正常工作狀態(tài)并對輸入命令數(shù)據(jù)進行響應,將數(shù)據(jù)輸出到調(diào)制電路,然后反射回閱讀器。閱讀器根據(jù)接收到的信號決定下一步操作。在閱讀器和待測芯片的交互過程中,可用邏輯分析儀觀察中間過程。圖4為先施閱讀器對測試芯片發(fā)送read命令時,用邏輯分析儀捕捉的內(nèi)部信號,其中信號data_in為解調(diào)器解調(diào)出的前向鏈路數(shù)據(jù),信號data_out為芯片的返回數(shù)據(jù)。
從已流片芯片的測試結(jié)果看,標簽芯片數(shù)字系統(tǒng)的設計很好地完成了符合ISO18000-6B協(xié)議的所有強制命令以及讀寫操作和鎖存、查詢鎖存等基本功能,且在閱讀器存盤操作下的平均速率為45~60張/s,功耗為3.10μW,很好地完成了低功耗無源電子標簽的設計。
評論