麻省理工用機(jī)器學(xué)習(xí)打造人工智能ICU實(shí)驗(yàn)室
麻省理工學(xué)院的計(jì)算機(jī)科學(xué)和人工智能實(shí)驗(yàn)室采用包括電子健康數(shù)據(jù)記錄等多種類型的醫(yī)療數(shù)據(jù)以預(yù)測(cè)醫(yī)療情況。兩個(gè)團(tuán)隊(duì)分別創(chuàng)建了“ICU干預(yù)”和“EHR模型遷移”機(jī)器學(xué)習(xí)方法,致力于改進(jìn)患者護(hù)理?xiàng)l件。
本文引用地址:http://cafeforensic.com/article/201708/363605.htm醫(yī)生經(jīng)常因需要察看各種圖表、測(cè)驗(yàn)結(jié)果和其他指標(biāo)所困擾。想要在整合與監(jiān)測(cè)多個(gè)患者數(shù)據(jù)的同時(shí)做出實(shí)時(shí)治療決策是十分困難的,特別是當(dāng)醫(yī)院之間數(shù)據(jù)記錄不一致時(shí),其所造成的挑戰(zhàn)就更大了。
麻省理工學(xué)院的計(jì)算機(jī)科學(xué)和人工智能實(shí)驗(yàn)室(CSAIL)的研究人員在一則新的文章中探討了怎樣能利用電腦幫助醫(yī)生做出更好醫(yī)療決策。
其中,一個(gè)團(tuán)隊(duì)創(chuàng)建了一種名為“重癥監(jiān)護(hù)室干預(yù)(ICU Intervene)”的機(jī)器學(xué)習(xí)方法,該方法需要大量的重癥監(jiān)護(hù)室(ICU)數(shù)據(jù),所需數(shù)據(jù)包括人的生命特征、實(shí)驗(yàn)室數(shù)據(jù)、說明筆記、人口統(tǒng)計(jì)數(shù)據(jù),以確定不同癥狀需要何種治療方法。該系統(tǒng)使用“深度學(xué)習(xí)”技術(shù)進(jìn)行實(shí)時(shí)預(yù)測(cè),從過去的ICU案例中學(xué)習(xí),從而為重癥監(jiān)護(hù)提出建議,同時(shí)解釋做出這些決策的原因。
有關(guān)ICU干預(yù)文章的主要作者Harini Suresh博士說:“該系統(tǒng)可能有助于在ICU中時(shí)刻待命的醫(yī)生,因?yàn)檫@是一個(gè)有著高壓力、高需求的環(huán)境。其目標(biāo)是利用醫(yī)療記錄中的數(shù)據(jù)來改善醫(yī)療條件并對(duì)可能出現(xiàn)的干預(yù)情況做出預(yù)測(cè)。”
另一個(gè)團(tuán)隊(duì)則開發(fā)出了“EHR模型遷移”的方法,其對(duì)于處理來自不同EHR系統(tǒng)的數(shù)據(jù)能夠進(jìn)行系統(tǒng)訓(xùn)練,可以用于幫助應(yīng)用預(yù)測(cè)模型于電子健康記錄(EHR)系統(tǒng)。具體來說,使用該研究團(tuán)隊(duì)的這種方法,可以實(shí)現(xiàn)在一個(gè)EHR系統(tǒng)上訓(xùn)練得出死亡率數(shù)據(jù)和延長(zhǎng)停留時(shí)間的預(yù)測(cè)模型,并將得出的模型遷移在另一個(gè)EHR系統(tǒng)中進(jìn)行預(yù)測(cè)。
ICU干預(yù)由Suresh博士、Nathan Hunt、Alistair Johnson博士后、Leo Anthony Celi研究員、麻省理工學(xué)院教授Peter Szolovits和博士生Marzyeh Ghassemi共同開發(fā),并于本月在波士頓醫(yī)療機(jī)器學(xué)習(xí)會(huì)議上首次提出。
EHR模型轉(zhuǎn)移由CSAIL在讀博士生Jen Gong和Tristan Naumann,以及Szolovits和電氣工程教授John Guttag共同研發(fā)。其在加拿大哈利法克斯的ACM知識(shí)發(fā)現(xiàn)和數(shù)據(jù)挖掘特別興趣小組上首次提出。
上述兩模型都使用了來自關(guān)鍵護(hù)理數(shù)據(jù)庫(kù)MIMIC的數(shù)據(jù)進(jìn)行了培訓(xùn),其中的數(shù)據(jù)包括來自大約40000名重癥監(jiān)護(hù)病人的去標(biāo)識(shí)數(shù)據(jù),并由麻省理工學(xué)院計(jì)算生理學(xué)實(shí)驗(yàn)室開發(fā)。
重癥監(jiān)護(hù)室(ICU)干預(yù)
整合ICU數(shù)據(jù)對(duì)于預(yù)測(cè)患者健康結(jié)果過程的自動(dòng)化而言至關(guān)重要。
Suresh表示:“此前,臨床決策中的許多工作都關(guān)注于死亡率等結(jié)果上,而這項(xiàng)工作的出現(xiàn)則是預(yù)測(cè)可行的治療方法。此外,該系統(tǒng)能夠使用單一模型預(yù)測(cè)出多種結(jié)果。”
ICU干預(yù)專注于對(duì)五種關(guān)鍵措施以小時(shí)為單位進(jìn)行預(yù)測(cè),措施涵蓋各種關(guān)鍵護(hù)理需求,如呼吸輔助、改善心血管功能、降低血壓、輸液治療。
每小時(shí),系統(tǒng)從代表生命體征的數(shù)據(jù)以及臨床筆記和其他數(shù)據(jù)點(diǎn)中提取值。所有數(shù)據(jù)都用值表示,表示患者距平均值多遠(yuǎn)(然后評(píng)估進(jìn)一步治療)。
重要的是,ICU干預(yù)可以對(duì)未來做出預(yù)測(cè)。例如,該模型可以預(yù)測(cè)6小時(shí)后患者是否需要呼吸機(jī),而不僅僅只能預(yù)測(cè)出患者在30分鐘或1小時(shí)后需要使用呼吸機(jī)。該團(tuán)隊(duì)還專注于為模型的預(yù)測(cè)提供推理,為醫(yī)生提供更多的見解。
斯坦福大學(xué)醫(yī)學(xué)副教授奈加姆·沙阿(Nigam Shah)說,“基于神經(jīng)網(wǎng)絡(luò)的深層神經(jīng)預(yù)測(cè)模型往往因其機(jī)器的身份而受到批評(píng),然而,這些作者高度準(zhǔn)確地預(yù)測(cè)了醫(yī)療干預(yù)的開始和結(jié)束,并且能夠?qū)嶋H證實(shí)其做出的預(yù)測(cè)的可解釋性。”
該團(tuán)隊(duì)發(fā)現(xiàn),該系統(tǒng)在預(yù)測(cè)干預(yù)措施方面優(yōu)于從前,并且特別擅長(zhǎng)預(yù)測(cè)血管加壓素的需要,這是一種用于收緊血管并提高血壓的藥物。
將來,研究人員將努力改進(jìn)ICU干預(yù),以便能夠?yàn)榛颊咛峁└鄠€(gè)性化護(hù)理,并為決策提供更先進(jìn)的預(yù)測(cè),例如為什么一個(gè)患者有可能逐漸減少類固醇,又或是為什么另一個(gè)患者可能需要進(jìn)行內(nèi)鏡檢查。
EHR模型遷移
利用ICU數(shù)據(jù)的另一個(gè)重要考慮因素是其存儲(chǔ)方式以及當(dāng)存儲(chǔ)方法發(fā)生變化時(shí)可能出現(xiàn)的情況?,F(xiàn)有的機(jī)器學(xué)習(xí)模型需要以一致的方式編碼數(shù)據(jù),因此醫(yī)院經(jīng)常改變其EHR系統(tǒng)就可能會(huì)為數(shù)據(jù)分析和預(yù)測(cè)帶來重大問題。
這就是EHR模型遷移的用武之地。該方法適用于不同版本的EHR平臺(tái),使用自然語言處理來識(shí)別跨系統(tǒng)編碼的臨床信息,然后將其映射到常見的臨床信息中(如“血壓”和“心率”)。
例如,一個(gè)EHR平臺(tái)中的病人可能正在轉(zhuǎn)換醫(yī)院,并需要將其數(shù)據(jù)傳輸?shù)讲煌愋偷钠脚_(tái)。EHR模型遷移旨在確保該模型能夠保持對(duì)患者情況的預(yù)測(cè)能力,例如患者長(zhǎng)期停留,或是出現(xiàn)死亡的可能性。
Shah說:“用于醫(yī)療治療的機(jī)器學(xué)習(xí)模型往往有著系統(tǒng)外部效度低下、站點(diǎn)之間的便攜性差的缺點(diǎn)。而這些作者卻設(shè)計(jì)了一個(gè)精妙的策略,即在醫(yī)學(xué)本體中使用已掌握的知識(shí),從而在兩個(gè)網(wǎng)站之間得出共同承認(rèn)的表達(dá),其能夠幫助模型在一網(wǎng)站上經(jīng)過訓(xùn)練后能在另一個(gè)網(wǎng)站上表現(xiàn)良好。能夠看到這樣創(chuàng)造性地使用編碼醫(yī)學(xué)知識(shí)來增強(qiáng)預(yù)測(cè)模型的可移植性,我很興奮。“
利用EHR模型遷移,該團(tuán)隊(duì)測(cè)試了其模型對(duì)兩種結(jié)果的預(yù)測(cè)能力:死亡率和長(zhǎng)期住院需求。他們?cè)谝粋€(gè)EHR平臺(tái)上對(duì)模型進(jìn)行了訓(xùn)練,然后在不同的平臺(tái)對(duì)其預(yù)測(cè)進(jìn)行了測(cè)試。發(fā)現(xiàn)EHR模型遷移優(yōu)于普通方法,并且與單獨(dú)使用EHR特異性事件相比,EHR預(yù)測(cè)模型能夠更好地進(jìn)行數(shù)據(jù)遷移。
未來,EHR模型遷移小組計(jì)劃對(duì)其他醫(yī)院和護(hù)理機(jī)構(gòu)的數(shù)據(jù)和EHR系統(tǒng)進(jìn)行評(píng)估。
評(píng)論