色婷婷AⅤ一区二区三区|亚洲精品第一国产综合亚AV|久久精品官方网视频|日本28视频香蕉

          新聞中心

          EEPW首頁 > 網(wǎng)絡(luò)與存儲 > 設(shè)計應(yīng)用 > 快速傅里葉變換FFT的C程序代碼實現(xiàn)

          快速傅里葉變換FFT的C程序代碼實現(xiàn)

          作者: 時間:2017-10-27 來源:網(wǎng)絡(luò) 收藏
            一、徹底理解

            快速(Fast Fourier Transform)是離散的一種快速算法,簡稱FFT,通過FFT可以將一個信號從時域變換到頻域。
            模擬信號經(jīng)過A/D轉(zhuǎn)換變?yōu)閿?shù)字信號的過程稱為采樣。為保證采樣后信號的頻譜形狀不失真,采樣頻率必須大于信號中最高頻率成分的2倍,這稱之為采樣定理。
            假設(shè)采樣頻率為fs,采樣點數(shù)為N,那么FFT結(jié)果就是一個N點的復(fù)數(shù),每一個點就對應(yīng)著一個頻率點,某一點n(n從1開始)表示的頻率為:fn=(n-1)*fs/N。
            舉例說明:用1kHz的采樣頻率采樣128點,則FFT結(jié)果的128個數(shù)據(jù)即對應(yīng)的頻率點分別是0,1k/128,2k/128,3k/128,…,127k/128 Hz。
            這個頻率點的幅值為:該點復(fù)數(shù)的模值除以N/2(n=1時是直流分量,其幅值是該點的模值除以N)。

            二、傅里葉變換的C語言編程

            1、對于快速傅里葉變換FFT,第一個要解決的問題就是碼位倒序。

            假設(shè)一個N點的輸入序列,那么它的序號二進制數(shù)位數(shù)就是t=log2N.
            碼位倒序要解決兩個問題:①將t位二進制數(shù)倒序;②將倒序后的兩個存儲單元進行交換。
            如果輸入序列的自然順序號i用二進制數(shù)表示,例如若最大序號為15,即用4位就可表示n3n2n1n0,則其倒序后j對應(yīng)的二進制數(shù)就是n0n1n2n3,那么怎樣才能實現(xiàn)倒序呢?利用C語言的移位功能!
            程序如下,我不多說,看不懂者智商一定在180以下!

            復(fù)數(shù)類型定義及其運算
            #define N 64 //64點
            #define log2N 6 //log2N=6
            /*復(fù)數(shù)類型*/
            typedef struct
            {
            float real;
            float img;
            }complex;
            complex xdata x[N]; //輸入序列
            /*復(fù)數(shù)加法*/
            complex add(complex a,complex b)
            {
            complex c;
            c.real=a.real+b.real;
            c.img=a.img+b.img;
            return c;
            }
            /*復(fù)數(shù)減法*/
            complex sub(complex a,complex b)
            {
            complex c;
            c.real=a.real-b.real;
            c.img=a.img-b.img;
            return c;
            }
            /*復(fù)數(shù)乘法*/
            complex mul(complex a,complex b)
            {
            complex c;
            c.real=a.real*b.real - a.img*b.img;
            c.img=a.real*b.img + a.img*b.real;
            return c;
            }
            /***碼位倒序函數(shù)***/
            void Reverse(void)
            {
            unsigned int i,j,k;
            unsigned int t;
            complex temp;//臨時交換變量
            for(i=0;iN;i++)//從第0個序號到第N-1個序號
            {
            k=i;//當(dāng)前第i個序號
            j=0;//存儲倒序后的序號,先初始化為0
            for(t=0;tlog2N;t++)//共移位t次,其中l(wèi)og2N是事先宏定義算好的
            {
            j=1;
            j|=(k1);//j左移一位然后加上k的最低位
            k>>=1;//k右移一位,次低位變?yōu)樽畹臀?br />  }
            if(j>i)//如果倒序后大于原序數(shù),就將兩個存儲單元進行交換(判斷j>i是為了防止重復(fù)交換)
            {
            temp=x;
            x=x[j];
            x[j]=temp;
            }
            }
            }

            2、第二個要解決的問題就是蝶形運算

           ?、俚?級(第1列)每個蝶形的兩節(jié)點“距離”為1,第2級每個蝶形的兩節(jié)點“距離”為2,第3級每個蝶形的兩節(jié)點“距離”為4,第4級每個蝶形的兩節(jié)點“距離”為8。由此推得,
            第m級蝶形運算,每個蝶形的兩節(jié)點“距離”L=2m-1。
           ?、趯τ?6點的FFT,第1級有16組蝶形,每組有1個蝶形;第2級有4組蝶形,每組有2個蝶形;第3級有2組蝶形,每組有4個蝶形;第4級有1組蝶形,每組有8個蝶形。由此可推出,
            對于N點的FFT,第m級有N/2L組蝶形,每組有L=2m-1個蝶形。
           ?、坌D(zhuǎn)因子的確定
            以16點FFT為例,第m級第k個旋轉(zhuǎn)因子為,其中k=0~2m-1-1,即第m級共有2m-1個旋轉(zhuǎn)因子,根據(jù)旋轉(zhuǎn)因子的可約性,,所以第m級第k個旋轉(zhuǎn)因子為,其中k=0~2m-1-1。

            為提高FFT的運算速度,我們可以事先建立一個旋轉(zhuǎn)因子數(shù)組,然后通過查表法來實現(xiàn)。

            complex code WN[N]=//旋轉(zhuǎn)因子數(shù)組
            { //為節(jié)省CPU計算時間,旋轉(zhuǎn)因子采用查表處理
            //★根據(jù)實際FFT的點數(shù)N,該表數(shù)據(jù)需自行修改
            //以下結(jié)果通過Excel自動生成
            // WN[k].real=cos(2*PI/N*k);
            // WN[k].img=-sin(2*PI/N*k);
            {1.00000,0.00000},{0.99518,-0.09802},{0.98079,-0.19509},{0.95694,-0.29028},
            {0.92388,-0.38268},{0.88192,-0.47140},{0.83147,-0.55557},{0.77301,-0.63439},
            {0.70711,-0.70711},{0.63439,-0.77301},{0.55557,-0.83147},{0.47140,-0.88192},
            {0.38268,-0.92388},{0.29028,-0.95694},{0.19509,-0.98079},{0.09802,-0.99518},
            {0.00000,-1.00000},{-0.09802,-0.99518},{-0.19509,-0.98079},{-0.29028,-0.95694},
            {-0.38268,-0.92388},{-0.47140,-0.88192},{-0.55557,-0.83147},{-0.63439,-0.77301},
            {-0.70711,-0.70711},{-0.77301,-0.63439},{-0.83147,-0.55557},{-0.88192,-0.47140},
            {-0.92388,-0.38268},{-0.95694,-0.29028},{-0.98079,-0.19509},{-0.99518,-0.09802},
            {-1.00000,0.00000},{-0.99518,0.09802},{-0.98079,0.19509},{-0.95694,0.29028},
            {-0.92388,0.38268},{-0.88192,0.47140},{-0.83147,0.55557},{-0.77301,0.63439},
            {-0.70711,0.70711},{-0.63439,0.77301},{-0.55557,0.83147},{-0.47140,0.88192},
            {-0.38268,0.92388},{-0.29028,0.95694},{-0.19509,0.98079},{-0.09802,0.99518},
            {0.00000,1.00000},{0.09802,0.99518},{0.19509,0.98079},{0.29028,0.95694},
            {0.38268,0.92388},{0.47140,0.88192},{0.55557,0.83147},{0.63439,0.77301},
            {0.70711,0.70711},{0.77301,0.63439},{0.83147,0.55557},{0.88192,0.47140},
            {0.92388,0.38268},{0.95694,0.29028},{0.98079,0.19509},{0.99518,0.09802}
            };

            3、算法實現(xiàn)

            我們已經(jīng)知道,N點FFT從左到右共有l(wèi)og2N級蝶形,每級有N/2L組,每組有L個。所以FFT的C語言編程只需用3層循環(huán)即可實現(xiàn):最外層循環(huán)完成每一級的蝶形運算(整個FFT共log2N級),中間層循環(huán)完成每一組的蝶形運算(每一級有N/2L組),最內(nèi)層循環(huán)完成單獨1個蝶形運算(每一組有L個)。
            /***【快速傅里葉變換】***/
            void FFT(void)
            {
            unsigned int i,j,k,l;
            complex top,bottom,xW;
            Reverse(); //碼位倒序
            for(i=0;ilog2N;i++) /*共log2N級*/
            { //一級蝶形運算
            l=1i;//l等于2的i次方
            for(j=0;jN;j+=2*l) /*每L個蝶形是一組,每級有N/2L組*/
            { //一組蝶形運算
            for(k=0;kl;k++) /*每組有L個*/
            { //一個蝶形運算
            xW=mul(x[j+k+l],WN[N/(2*l)*k]); //碟間距為l
            top=add(x[j+k],xW); //每組的第k個蝶形
            bottom=sub(x[j+k],xW);
            x[j+k]=top;
            x[j+k+l]=bottom;
            }
            }
            }
            }

            三、FFT計算結(jié)果驗證

            隨便輸入一個64點序列,例如
            x[N]={{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0},{8,0},{4,0},{1,0},{3,0},{2,0},{5,0}};
            在Keil中Debug查看數(shù)組變量x的FFT計算結(jié)果并與MATLAB計算結(jié)果進行比對,可以發(fā)現(xiàn)非常準(zhǔn)確,說明程序編寫正確!


          關(guān)鍵詞: 傅里葉變換 C程序

          評論


          相關(guān)推薦

          技術(shù)專區(qū)

          關(guān)閉