手機(jī)快充芯片的工作原理和設(shè)計(jì)要求詳解
目前隨著手機(jī)配備的鋰離子電池容量越來越大,人們希望能夠在盡量短的時間內(nèi)給自己的手機(jī)充得足夠的電量,以滿足自己日常生活和工作的需要。例如,華為P9配備3000mAH小時的鋰離子電池,如果期望在一小時內(nèi)把電池接近充滿,則需要充電電流在3A以上。為了實(shí)現(xiàn)這么大電流的充電,使用開關(guān)式充電管理芯片(下面簡稱快充芯片)是一個很好的方案,這也是業(yè)界目前共同的選擇。本文假設(shè)大家對DCDC的工作原理已有基本的了解,主要從技術(shù)的角度來分析應(yīng)用在手機(jī)上的快充芯片的工作原理和設(shè)計(jì)要求,同時也會簡要介紹其他正在涌現(xiàn)的充電技術(shù)。
本文引用地址:http://cafeforensic.com/article/201808/386034.htm一。 手機(jī)的四個充電環(huán)節(jié)
圖1 手機(jī)的四個充電環(huán)節(jié)
圖1總結(jié)了我們在實(shí)際充電過程中涉及到的四個環(huán)節(jié):
1)充電適配器的任務(wù)是把220V的市電轉(zhuǎn)換為手機(jī)能夠承受的5V電壓(現(xiàn)在應(yīng)各種充電協(xié)議,如QC和USB PD(Type C接口)等的要求,也要求能夠送出9V/12V/14.5V甚至20V的電壓。關(guān)于充電協(xié)議的話題我們已在前面一篇公眾號做過討論),同時具有一定的功率輸出能力,例如5V/2A, 9V/1A等等規(guī)格。充電適配器屬于AC-DC的技術(shù)范疇,平常所說的快充芯片其實(shí)是對適配器AC-DC芯片和手機(jī)端的開關(guān)式充電管理芯片(以 DC-DC技術(shù)為實(shí)現(xiàn)手段)的統(tǒng)稱,但本文的快充芯片特指手機(jī)端的開關(guān)式充電管理芯片。
2)充電線的任務(wù)就是負(fù)責(zé)把電壓/電流從適配器端傳送到手機(jī)端,由于目前絕大多數(shù)充電線實(shí)際上就是USB線。這里有一個參數(shù)需要提請大家注意。按照USB2.0的標(biāo)準(zhǔn),線纜需要具備傳送最大1.8A的電流能力,因此如果是5V的適配器,USB2.0的線纜最大能傳送的功率其實(shí)只有9W。
3)快充芯片的任務(wù)是把適配器的5V/9V/12V等電壓轉(zhuǎn)換成電池的電壓,同時按照需要的充電電流精確可控地向電池進(jìn)行充電。從技術(shù)上看,快充芯片是這四個環(huán)節(jié)中最具有挑戰(zhàn)的部分,因此目前業(yè)界有能力提供高品質(zhì)高可靠性的快充芯片的廠家十分有限,主要還是以德州儀器,仙童半導(dǎo)體等少數(shù)幾家國外大廠為主,國內(nèi)的希荻微電子經(jīng)過幾年堅(jiān)持不懈的自主研發(fā),已推出了一系列的快充芯片,打破了國外大廠的壟斷局面,并已在各大手機(jī)方案商和品牌商得到廣泛的應(yīng)用??斐湫酒唧w的工作原理將在下文做詳細(xì)討論。
4)電池是這個環(huán)節(jié)非常重要的部分,整個充電環(huán)節(jié)都是為了使電池快速而安全地充滿電量。電池的主要參數(shù)包括:容量(mAH,手機(jī)中常見的有2000mAH, 3000mAH和4100mAH),充電截止電壓(目前常見的有4.2V, 4.35V和4.4V規(guī)格,更高的充電截止電壓,在同等的電池體積情況下,通常具有更高的電池容量,因此目前所謂的4.35V及以上的高壓電池逐漸在手機(jī)上得到更廣泛的應(yīng)用),以及可接受的最大充電電流等等。其中,可接受的最大充電電流一般以nC來表示。例如一個3000mAH的電池,1C的充電速度是指一個小時之內(nèi)即可充滿電池,此時可接受的最大充電電流就是3A;如果允許2C的充電速度,那么理論上半小時就可以充滿電池,則此時可接受的最大充電電流即為6A;以此類推等等。下文將會看到,電池的這幾個參數(shù)將對選用合適的快充芯片產(chǎn)生直接的影響。
二。 經(jīng)典的三段式充電
其實(shí)給鋰離子電池充電的過程和我們生活中用水龍頭向洗臉盆放水的過程非常類似:
第一階段:當(dāng)開始給一個空的臉盆放水的時候,為了不讓水濺出來,會把水量控制得很小;第二階段:等到臉盆底部積滿了一定水位之后,才把水龍頭開得比較大,臉盆里已有的水可以對這樣急速的進(jìn)水起到緩沖作用,從而不會有水花濺出;
第三階段:當(dāng)水位快到臉盆頂部的時候,此時我們又會逐漸減小進(jìn)水量,以防止有水沖出臉盆之外,直至積滿整個水盆。
電池就像這個臉盆,只不過它儲存的不是水,而是電荷。電池的充電也有類似的三個階段:
第一階段:涓流充電。電池的特點(diǎn)是,當(dāng)電池電壓(大致相當(dāng)于水位)非常低的時候,其內(nèi)部的鋰離子活動性較差,內(nèi)阻較大,因此只能接受較小的充電電流(一般在30到50mA左右),否則電池容易發(fā)熱和老化,不僅損害電池壽命,而且有潛在的安全問題,因此把這個階段稱為涓流充電,也有同行將之稱為線性充電或者預(yù)充電等等。
第二階段:恒流充電。當(dāng)電池電壓高于2V以上,電池的鋰離子活動性被充分激活,內(nèi)阻也較小,所以能夠接受大電流的充電。在這個階段,快充芯片會按照設(shè)定向電池提供可接受的充電電流,因此在這個階段電池得到的電量也是最大的,可以占到容量的70%到80%以上。
第三階段:恒壓充電。電池是一個十分嬌氣的儲能元件,它的電池電壓不允許超過截止電壓的±50mV,否則就會有安全隱患。因此,當(dāng)電池電壓被充到接近充電截止電壓的時候,快充芯片必須能夠自動減小充電電流,控制“水花”不要超出范圍,直至把電池完全充滿。
圖2 三段式充電示意圖
一個合格的快充芯片,必須能夠根據(jù)電池電壓的高低,自動地控制充電過程在上述三個階段之間進(jìn)行無縫切換,而無需其他硬件或者軟件的幫助。
三。 電源路徑管理功能
電池的目的是要給電子設(shè)備例如手機(jī)供電,如果電池沒電了,自然手機(jī)也就無法工作了,所以這個時候必須要插上充電器充電。我們來看看幾種不同的快充芯片在使用上的體驗(yàn)有何不同。
圖3 不帶電源路徑管理功能的快充芯片工作示意圖
圖3是國內(nèi)廠商推出的第一代快充芯片,請注意紅圈所指的位置。此處,既是電池正極所在之處,也是由這一點(diǎn)向手機(jī)系統(tǒng)供電。那么我們很容易想到:當(dāng)電池電壓很低的情況下,即便插入了充電器,即快充芯片已經(jīng)在對電池進(jìn)行充電了,但由于此時電池電壓很低,不足以開啟系統(tǒng),因此手機(jī)是無法啟動的。只有當(dāng)電池電壓已經(jīng)被充到足夠高之后,手機(jī)才能正常工作。
我們自然會問,有沒有一種辦法,只要我們插入了充電器,即便電池電壓很低,也可以啟動手機(jī)呢?辦法是有的,只要我們把給電池充電的端口和給系統(tǒng)供電的端口做一個智能的隔斷,就可以達(dá)到這個目的。業(yè)界把這個功能稱為電源路徑管理,這個功能也是第二代快充芯片的標(biāo)志性特點(diǎn)之一。
圖4 帶電源路徑管理功能的快充芯片工作示意圖
圖4中,給系統(tǒng)供電的SYS引腳和給電池充電的BAT引腳就是兩個獨(dú)立的引腳,在它們之間內(nèi)部集成了一個智能開關(guān)。當(dāng)電池電壓較低的情況下,這個智能開關(guān)處于半開啟的狀態(tài),把SYS和BAT的電壓自然拉開,以保證SYS的電壓足以支持后級系統(tǒng)的工作;當(dāng)電池電壓足夠高之后,這個智能開關(guān)才完全開啟,相當(dāng)于一根電阻很小的導(dǎo)線把SYS和BAT短接在一起,以最大程度降低其間的功耗。
四。 高電壓工作
現(xiàn)在的電池容量越來越大,因此在充電的時候,其需要的功率是很大的。例如,一個3000mAH的電池,若以3A對其充電,以3.8V電池電壓計(jì)算,其接受的功率是11.4W,假設(shè)快充芯片的轉(zhuǎn)換效率是90%,那么進(jìn)入快充芯片的功率就是12.7W左右。根據(jù)前面分析的充電的四個環(huán)節(jié),此時對線纜的要求就來了:如果快充芯片是工作在5V,那就意味著線上的電流是2.5A左右,這不僅超出了現(xiàn)有的USB2.0線纜的傳送能力,并且這么大的電流會在線纜上造成較大的功率損失。例如1米線纜的寄生電阻大約是250毫歐,其功耗就差不多1.5W!為了解決這個問題,我們可以像生活中常見的高壓輸電線一樣,提高傳送的電壓,線上的電流和功耗也就自然降下來了。還是剛才的例子,若傳送的電壓換成9V,那么線上的電流就只有1.4A左右,因此現(xiàn)有的USB2.0線纜就足夠用了(節(jié)省成本!),線上的功耗也僅有0.5W。相應(yīng)地,快充芯片也需要在9V,12V甚至20V的工作電壓下正常工作。這是對快充芯片的一個重要要求。
五。 轉(zhuǎn)換效率
手機(jī)是一個用戶體驗(yàn)至上的電子設(shè)備,在充電方面,個人用戶不僅要求充電快速安全,同時更喜歡發(fā)熱較低的手機(jī)。為了實(shí)現(xiàn)這個目標(biāo),對快充芯片的要求自然就是高轉(zhuǎn)換效率。當(dāng)然除此之外,還需要快充芯片選用低熱阻的封裝,例如帶散熱盤的QFN封裝;在手機(jī)設(shè)計(jì)的時候,也應(yīng)對散熱措施多加考慮等等。可喜的是,國產(chǎn)廠家充分意識到了轉(zhuǎn)換效率對用戶的重要性,產(chǎn)品在指標(biāo)上已經(jīng)趕超了國外品牌,如圖5所示。
圖5 快充芯片的轉(zhuǎn)換效率曲線
六。 充電參數(shù)的可配置性
正如前面對電池的分析,由于不同的電池可以接受的電流能力不同,其充電截止電壓也不一樣,這要求快充芯片能夠根據(jù)不同的電池,通過軟件配置不同的充電參數(shù),以提高快充芯片的通用性。通常,快充芯片是通過I2C接口來完成這些配置。其他需要配置的常見參數(shù)還有:
輸入電壓限壓閾值;
輸入電流限流閾值;
充電截止電流;
芯片的工作模式控制。
七。 耐壓和抗浪涌能力設(shè)計(jì)
在手機(jī)里面,快充芯片是USB/Type C接口進(jìn)來看見的第一顆芯片。充電線的反復(fù)插拔會帶來很高的毛刺電壓,這需要快充芯片具有良好的耐壓能力;在USB2.0的應(yīng)用下,需要快充芯片具有20V以上的耐壓能力。更具威脅的是電網(wǎng)通過適配器傳送過來的浪涌電壓,尤其是在像印度這樣電網(wǎng)十分不穩(wěn)定的地區(qū),其浪涌電壓會高達(dá)300V以上,這要求快充芯片在加上保護(hù)器件(例如TVS)的情況下能安全工作而不會被損壞。
八。 其他要求和其他快充技術(shù)
用于手機(jī)上的快充芯片,其功能期望還包括OTG功能,檢測電池溫度,系統(tǒng)復(fù)位和輸運(yùn)模式的功能等等。另外,目前正在興起的低壓直充技術(shù)也是非常值得關(guān)注的方向,其做法與高壓快充正好相反,是通過降低適配器的輸出電壓,在恒流充電階段使其與電池電壓保持足夠小的同步壓差跟蹤,以此提高充電電流,并同時提高轉(zhuǎn)換效率。限于篇幅這兩方面的內(nèi)容就不一一展開了。歡迎有興趣的朋友和本文作者聯(lián)系,我們一起做進(jìn)一步的探討,共同努力把我們中國的快充芯片做好做強(qiáng)做大!
評論