基于驅(qū)動LED串的DCM升壓轉(zhuǎn)換器的詳細理論分析
固定頻率升壓轉(zhuǎn)換器非常適合于以恒流模式驅(qū)動LED串。這種轉(zhuǎn)換器采用不連續(xù)導電模式(DCM)工作,能夠有效地用于快速調(diào)光操作,提供比采用連續(xù)導電模式(CCM)工作的競爭器件更優(yōu)異的瞬態(tài)響應(yīng)。當LED導通時,DCM工作能夠提供快速的瞬態(tài)性能,為輸出電容重新充電,因而將LED的模擬調(diào)光降至最低。為了恰當?shù)胤€(wěn)定DCM升壓轉(zhuǎn)換器,存在著小信號模型。然而,驅(qū)動LED的升壓轉(zhuǎn)換器的交流分析,跟使用標準電阻型負載的升壓轉(zhuǎn)換器的交流分析不同。由于串聯(lián)二極管要求直流和交流負載條件,在推導最終的傳遞函數(shù)時必須非常審慎。
本文引用地址:http://cafeforensic.com/article/201808/387838.htm本文(即第1部分)不會使用不連續(xù)導電模式(DCM)升壓轉(zhuǎn)換器的傳統(tǒng)小信號模型,而將使用基于所研究轉(zhuǎn)換器之輸出電流表達式的簡化方法。在第2部分(實際考慮),我們將深入研究應(yīng)用方案,驗證測量精度,并與理論推導進行比較。
為LED串供電的升壓轉(zhuǎn)換器
圖1顯示了驅(qū)動LED串的恒定頻率峰值電流工作模式升壓轉(zhuǎn)換器的簡化電路圖。輸出電流被感測電阻Rsense持續(xù)監(jiān)測。相應(yīng)的輸出電壓施加在控制電路上,持續(xù)調(diào)節(jié)電源開關(guān)的導通時間,以提供恒定的LED電流Iout。這就是受控的輸出變量。
圖1驅(qū)動LED串以發(fā)光的升壓轉(zhuǎn)換器。
輸出電流被穩(wěn)流至設(shè)定點值。發(fā)光時, LED串會在LED連接的兩端產(chǎn)生電壓。這電壓取決于跟各個LED技術(shù)相關(guān)的閾值電壓VT0及其動態(tài)阻抗rd。因此,LED串兩端的總壓降就是各LED閾值電壓之和VZ,而而動態(tài)阻抗rLEDs表示的是LED串聯(lián)動態(tài)阻抗之和。圖2顯示的是采用的等效電路。您可以自己來對LED串壓降及其總動態(tài)阻抗進行特征描述。為了測量起見,將LED串電流偏置至其額定電流IF1。一旦LED達到熱穩(wěn)定,就測量LED串兩端的總壓降Vf1。將電流改變?yōu)樯缘椭礗F2并測量新的壓降VF2。根據(jù)這些值,您可計算出總動態(tài)阻抗,即:
“齊納”電壓約等于LED串電壓VF1減去rLEDs與測量點電流之積:
我們假定以100 mA電流來偏置我們的LED串。測量出的總壓降為27.5 V。我們將電流減小至80 mA,新得到的壓降值就是26.4 V??倓討B(tài)阻抗的計算很簡單:
根據(jù)等式,我們可以簡單地計算出齊納電壓:
圖2 LED連接
LED采用串聯(lián)連接,故需對它們的閾值電壓進行累加;而總動態(tài)阻抗是串聯(lián)連接的各個LED動態(tài)阻抗之和。
回頭再看圖1。LED串與感測電阻Rsense串聯(lián)??偨涣?ac)阻抗因此就是兩者之和:
圖3是大幅簡化的等效直流(dc)電路圖。直流輸出電壓Vout等于輸出電流Iout與電阻Rac之積再加齊納電壓:
在交流條件下,由于齊納電壓恒定,故上述等式可簡化為:
圖3:這直流簡化電路圖顯示了等效齊納二極管及其動態(tài)阻抗。
簡化模型
電流源實際上指的是從輸入電源獲得并無損耗地傳輸?shù)捷敵龅碾娏?。電流源可以被控制電壓Vc向上或向下調(diào)節(jié),而Vc逐周期設(shè)定電感峰值電流??刂破魍ㄟ^升壓轉(zhuǎn)換器開關(guān)電流感測電阻Ri來觀測電感峰值電流,并以此工作。當Ri兩端電壓與控制電壓匹配時,電源開關(guān)就被指示關(guān)閉。
評論