TinyML前進(jìn)物聯(lián) MCU深度學(xué)習(xí)成為可能
物聯(lián)網(wǎng)正加速帶動(dòng)人工智能走向終端裝置,我們可以看到市場(chǎng)繼續(xù)保持積極的成長(zhǎng)趨勢(shì)。市場(chǎng)也期待有更多的人工智能物聯(lián)網(wǎng)設(shè)備在市場(chǎng)上普及,并深入包括消費(fèi)性物聯(lián)網(wǎng)設(shè)備、工業(yè)應(yīng)用和網(wǎng)絡(luò)、還有與視覺(jué)、語(yǔ)音和聲音影像相關(guān)的邊緣應(yīng)用。
AI的應(yīng)用案例正在推動(dòng)著龐大的物聯(lián)網(wǎng)運(yùn)算需求,而這背后都需要透過(guò)MCU來(lái)釋放這些運(yùn)算能量。我們也可以看出市場(chǎng)上的MCU解決方案基本上有兩大發(fā)展趨勢(shì),用以支持新一代的機(jī)器學(xué)習(xí)(Machine Learning;ML)運(yùn)算能力。一是提高MCU本身的運(yùn)算性能及能力,例如從Arm Cortex M0+提升到M4、M33和M7等。另一種則是透過(guò)在MCU中整合機(jī)器學(xué)習(xí)加速器或DSP等,來(lái)強(qiáng)化ML運(yùn)算能力。
智能系統(tǒng)主架構(gòu)
恩智浦半導(dǎo)體大中華區(qū)資深營(yíng)銷(xiāo)經(jīng)理黃健洲指出,物聯(lián)網(wǎng)對(duì)于未來(lái)智能化系統(tǒng)的重要性不言可喻。物聯(lián)網(wǎng)被視為未來(lái)各種智能化系統(tǒng)的主要架構(gòu),透過(guò)底層感測(cè)網(wǎng)絡(luò)、中間通訊傳輸與上層云端平臺(tái)的組合,讓信息無(wú)縫流動(dòng),進(jìn)而延伸出更多應(yīng)用,賦予更智能的生活體驗(yàn)。不過(guò)隨著物聯(lián)網(wǎng)應(yīng)用多元化、許多應(yīng)用或因功能安全或因直觀需要實(shí)時(shí)反應(yīng),集中式運(yùn)算的物聯(lián)網(wǎng)架構(gòu)已難因應(yīng)所有領(lǐng)域,因此系統(tǒng)終端開(kāi)始被賦予一定程度的運(yùn)算能力,以提升實(shí)時(shí)反應(yīng)功能。
圖一 : 恩智浦半導(dǎo)體大中華區(qū)資深營(yíng)銷(xiāo)經(jīng)理黃健洲
過(guò)去的物聯(lián)網(wǎng)架構(gòu)中,數(shù)據(jù)需要從底層傳回云端平臺(tái),再?gòu)脑贫似脚_(tái)下指令由終端設(shè)備動(dòng)作,對(duì)工廠、汽車(chē)或智能家電這類(lèi)需要高實(shí)時(shí)性的系統(tǒng)來(lái)說(shuō),一來(lái)一往的訊息傳遞極為耗時(shí),因此具備運(yùn)算能力的終端設(shè)備。這類(lèi)終端設(shè)備可在本地處理指令,快速響應(yīng)用戶(hù)需求。
但最重要的是,因?yàn)槲锫?lián)網(wǎng)的應(yīng)用多元,每一類(lèi)型的應(yīng)用架構(gòu)都可找到最適合的效能架構(gòu),如何讓資源使用優(yōu)化,落實(shí)物盡其用的愿景,是目前設(shè)計(jì)工程師最需要的考慮的方向。
先進(jìn)制程將幫助打造更快速、更有效率的運(yùn)算架構(gòu),能夠有效管理實(shí)時(shí)分析及運(yùn)用大量由終端裝置所產(chǎn)生的數(shù)據(jù)數(shù)據(jù),因應(yīng)用戶(hù)在不同情境下的需求,在短時(shí)間內(nèi)精確處理海量的數(shù)據(jù),并做出最正確的判斷與實(shí)時(shí)的反應(yīng)。
TinyML打造智能聯(lián)網(wǎng)設(shè)備
TinyML可望在未來(lái)五年內(nèi)獲得超過(guò)700億美元的收益,其目的就在提升物聯(lián)網(wǎng)設(shè)備易用性,并改變智能物聯(lián)的未來(lái)前景。
將運(yùn)算從云端轉(zhuǎn)移至邊緣端,甚至是終端裝置,一直是這幾年產(chǎn)業(yè)的大趨勢(shì),這使得Edge AI及End-point AI成為近幾年熱門(mén)的話題。當(dāng)然產(chǎn)業(yè)也開(kāi)始重視MCU-based AI應(yīng)用,從嵌入式機(jī)器學(xué)習(xí)(Embedded ML)到微型機(jī)器學(xué)習(xí)(TinyML)都開(kāi)始受到關(guān)注。TinyML被視為是快速發(fā)展的機(jī)器學(xué)習(xí)技術(shù)應(yīng)用領(lǐng)域,從硬件、算法到應(yīng)用軟件,都能以極低的功耗來(lái)執(zhí)行設(shè)備上的傳感器數(shù)據(jù)分析,并實(shí)現(xiàn)各種長(zhǎng)時(shí)間運(yùn)作的應(yīng)用,滿足電池長(zhǎng)期供電的設(shè)備需求,因此特別適合用于物聯(lián)網(wǎng)設(shè)備。
TinyML將邊緣AI更進(jìn)一步深化,使得在微控制器(MCU)上運(yùn)行深度學(xué)習(xí)模型成為可能。比起一些小型的處理器,MCU的資源受限得多。目前MCU價(jià)格很便宜,平均銷(xiāo)售價(jià)格約低于0.50美元,而且它們無(wú)所不在,嵌入到消費(fèi)端和工業(yè)設(shè)備之中。因此,如果在MCU上導(dǎo)入深度學(xué)習(xí)模型,就可以為許多應(yīng)用開(kāi)啟新的應(yīng)用。
深度學(xué)習(xí)模型最初的成功,要?dú)w功于具有海量存儲(chǔ)器和GPU資源的大型服務(wù)器。深度學(xué)習(xí)的前景催生了整個(gè)深度神經(jīng)網(wǎng)絡(luò)的云端運(yùn)算產(chǎn)業(yè),在幾乎無(wú)限制的云端資源上運(yùn)行超大型神經(jīng)網(wǎng)絡(luò)是件很酷的事情,特別是針對(duì)那些有能力支付大筆開(kāi)銷(xiāo)的大型企業(yè)。然而在此同時(shí),近年來(lái)我們也看到了新的趨勢(shì),也就是在邊緣設(shè)備上也開(kāi)始需要導(dǎo)入機(jī)器學(xué)習(xí)模型。這些模型就是TinyML,這適合用在記憶容量與運(yùn)算能力有限的物聯(lián)網(wǎng)設(shè)備上。
隨著半導(dǎo)體技術(shù)的快速提升,現(xiàn)在可以說(shuō)是在物聯(lián)網(wǎng)終端裝置上,設(shè)計(jì)與部署真正智能的好時(shí)機(jī)。具備感知環(huán)境能力的裝置,能為其搜集到的數(shù)據(jù)與促成的服務(wù),創(chuàng)造極大的價(jià)值。硬件與軟件近年來(lái)的發(fā)展,能夠?yàn)樵举Y源受限的終端裝置平臺(tái)增添更多的運(yùn)算效能,促成大幅度的改變,讓開(kāi)發(fā)人員可以為終端裝置導(dǎo)入真正的智能,并打造出視覺(jué)、語(yǔ)音與震動(dòng)的能力。
智能聯(lián)網(wǎng)組件的選擇考慮
實(shí)時(shí)性與低延遲
Arm AIoT方案資深經(jīng)理黃晏祥指出,許多情況下,將數(shù)據(jù)發(fā)送回云端進(jìn)行處理是不可行的。減少數(shù)據(jù)往返時(shí)間不僅可以提高響應(yīng)時(shí)間,而且在工業(yè)制造等作業(yè)中,實(shí)時(shí)處理對(duì)安全和營(yíng)運(yùn)相當(dāng)重要。同樣的原則也適用于車(chē)聯(lián)網(wǎng)的場(chǎng)景。因此,在智慧化的物聯(lián)網(wǎng)應(yīng)用當(dāng)中,可運(yùn)用ML來(lái)更快獲得訊息,并以極低延遲的效率傳遞給人或機(jī)器。
圖二 : Arm AIoT方案資深經(jīng)理黃晏祥
安全與隱私保護(hù)
當(dāng)物聯(lián)網(wǎng)裝置被廣泛部署,而裝置上又收集到許多數(shù)據(jù)數(shù)據(jù),甚至有些機(jī)敏的數(shù)據(jù),使得信息安全對(duì)于物聯(lián)網(wǎng)從端到云的整個(gè)過(guò)程也都極為重要。企業(yè)在布署物聯(lián)網(wǎng)時(shí),對(duì)于遵從哪套標(biāo)準(zhǔn)也可能莫衷一是。Arm推動(dòng)的PSA認(rèn)證制度,就是希望能提供業(yè)界一致的安全標(biāo)準(zhǔn)。
規(guī)?;c經(jīng)濟(jì)效益
物聯(lián)網(wǎng)最大的挑戰(zhàn)之一就是碎片化。之前許多企業(yè)傾向采用專(zhuān)用(proprietary)系統(tǒng),造成物聯(lián)網(wǎng)不易擴(kuò)大規(guī)模,導(dǎo)致經(jīng)濟(jì)效益不彰。Arm Project Centauri目的在于建立一套開(kāi)放標(biāo)準(zhǔn)架構(gòu),可以先就底層作業(yè)預(yù)作處理,并簡(jiǎn)化設(shè)計(jì)流程,物聯(lián)網(wǎng)開(kāi)發(fā)者可針對(duì)特定應(yīng)用場(chǎng)景進(jìn)行差異化開(kāi)發(fā)。同時(shí),物聯(lián)網(wǎng)相關(guān)應(yīng)用也能更容易地進(jìn)行開(kāi)發(fā),更快的反應(yīng)市場(chǎng)趨勢(shì)并掌握商機(jī),以提高企業(yè)的投資報(bào)酬率。
低功耗及易于使用
TinyML的導(dǎo)入,在硬件層面需要解決對(duì)于極低功耗的要求,在軟件層面則需要滿足易于使用與移植的特性。
結(jié)語(yǔ)
根據(jù)預(yù)測(cè),到2030年,大約有20億臺(tái)設(shè)備將透過(guò)TinyML技術(shù)進(jìn)入市場(chǎng),并透過(guò)具有成本效益的方式,創(chuàng)造智能設(shè)備來(lái)造福市場(chǎng)使用者。至于在經(jīng)濟(jì)方面,TinyML可望在未來(lái)五年內(nèi)獲得超過(guò)700億美元的收益。TinyML目的就在于提升物聯(lián)網(wǎng)設(shè)備的應(yīng)用易用性,并且改變智能化物聯(lián)設(shè)備的未來(lái)前景。
評(píng)論